Limits...
Identification of a botanical inhibitor of intestinal diacylglyceride acyltransferase 1 activity via in vitro screening and a parallel, randomized, blinded, placebo-controlled clinical trial.

Velliquette RA, Grann K, Missler SR, Patterson J, Hu C, Gellenbeck KW, Scholten JD, Randolph RK - Nutr Metab (Lond) (2015)

Bottom Line: Phenolic acids (i.e., gallic acid) and polyphenols (i.e., cyanidin) abundantly found in nature appeared to inhibit DGAT1 enzyme activity in vitro.Four polyphenolic rich botanical extracts were identified from in vitro evaluation in both cell-free and cellular model systems: apple peel extract (APE), grape extract (GE), red raspberry leaf extract (RLE) and apricot/nectarine extract (ANE) (IC50 = 1.4, 5.6, and 10.4 and 3.4 μg/mL, respectively).These data suggest that a dietary GE has the potential to attenuate postprandial hypertriglyceridemia in part by the inhibition of intestinal DGAT1 enzyme activity without intolerable side effects.

View Article: PubMed Central - PubMed

Affiliation: Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA.

ABSTRACT

Background: Diacylglyceride acyltransferase 1 (DGAT1) is the enzyme that adds the final fatty acid on to a diacylglyceride during triglyceride (TG) synthesis. DGAT1 plays a key role in the repackaging of dietary TG into circulating TG rich chylomicrons. A growing amount of research has indicated that an exaggerated postprandial circulating TG level is a risk indicator for cardiovascular and metabolic disorders. The aim of this research was to identify a botanical extract that inhibits intestinal DGAT1 activity and attenuates postprandial hypertriglyceridemia in overweight and obese humans.

Methods: Twenty individual phytochemicals and an internal proprietary botanical extract library were screened with a primary cell-free DGAT1 enzyme assay that contained dioleoyl glycerol and palmitoleoyl Coenzyme A as substrates plus human intestinal microsomes as the DGAT1 enzyme source. Botanical extracts with IC50 values < 100 μg/mL were evaluated in a cellular DGAT1 assay. The cellular DGAT1 assay comprised the analysis of (14)C labeled TG synthesis in cells incubated with (14)C-glycerol and 0.3 mM oleic acid. Lead botanical extracts were then evaluated in a parallel, double-blind, placebo-controlled clinical trial. Ninety healthy, overweight and obese participants were randomized to receive 2 g daily of placebo or individual botanical extracts (the investigational product) for seven days. Serum TG levels were measured before and after consuming a high fat meal (HFM) challenge (0.354 L drink/shake; 77 g fat, 25 g carbohydrate and 9 g protein) as a marker of intestinal DGAT1 enzyme activity.

Results: Phenolic acids (i.e., gallic acid) and polyphenols (i.e., cyanidin) abundantly found in nature appeared to inhibit DGAT1 enzyme activity in vitro. Four polyphenolic rich botanical extracts were identified from in vitro evaluation in both cell-free and cellular model systems: apple peel extract (APE), grape extract (GE), red raspberry leaf extract (RLE) and apricot/nectarine extract (ANE) (IC50 = 1.4, 5.6, and 10.4 and 3.4 μg/mL, respectively). In the seven day clinical trial, compared to placebo, only GE significantly reduced the baseline subtracted change in serum TG AUC following consumption of the HFM (AUC = 281 ± 37 vs. 181 ± 30 mg/dL*h, respectively; P = 0.021). Chromatographic characterization of the GE revealed a large number of closely eluting components containing proanthocyanidins, catechins, anthocyanins and their secondary metabolites that corresponded with the observed DGAT1 enzyme inhibition in the cell-free model.

Conclusion: These data suggest that a dietary GE has the potential to attenuate postprandial hypertriglyceridemia in part by the inhibition of intestinal DGAT1 enzyme activity without intolerable side effects.

Trial registration: This trial was registered with ClinicalTrials.gov NCT02333461.

No MeSH data available.


Related in: MedlinePlus

Percent DGAT1 enzyme inhibition and IC50 values for the four lead botanical extracts. a APE, GE, RLE and ANE exhibited dose responsive inhibition of DGAT1 enzyme activity in the cell-free assay. The IC50 values ranged from 1.41 to 10.4 μg/mL and 17.1 ng/mL for A-922500. Results are the mean of triplicates. b The cellular DGAT1 assay was comprised of adding [14C]-glycerol to label newly synthesized TG and 0.3 mM oleic acid/BSA to stimulate DGAT1 activity. All botanical extracts and A-922500 inhibited oleic acid induced DGAT1 enzyme activity as measured by 14C label TG levels. GE was statistically more potent than APE, RLE and ANE, defined as greatest inhibition at the lowest dose (100 μg/mL) (Two-way ANOVA with Bonferroni's multiple comparisons test; P < 0.001). Result are the mean ± SEM (n = 3). Different letters, within each dose, indicate statistically significant
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4526202&req=5

Fig4: Percent DGAT1 enzyme inhibition and IC50 values for the four lead botanical extracts. a APE, GE, RLE and ANE exhibited dose responsive inhibition of DGAT1 enzyme activity in the cell-free assay. The IC50 values ranged from 1.41 to 10.4 μg/mL and 17.1 ng/mL for A-922500. Results are the mean of triplicates. b The cellular DGAT1 assay was comprised of adding [14C]-glycerol to label newly synthesized TG and 0.3 mM oleic acid/BSA to stimulate DGAT1 activity. All botanical extracts and A-922500 inhibited oleic acid induced DGAT1 enzyme activity as measured by 14C label TG levels. GE was statistically more potent than APE, RLE and ANE, defined as greatest inhibition at the lowest dose (100 μg/mL) (Two-way ANOVA with Bonferroni's multiple comparisons test; P < 0.001). Result are the mean ± SEM (n = 3). Different letters, within each dose, indicate statistically significant

Mentions: Botanical extracts from an internal, proprietary botanical extract library were selected based on their predicted presence of the polyphenolic inhibitors presented in Fig. 3, and screened through the cell-free DGAT1 assay. Four lead botanical extracts emerged from the library screening (Fig. 4): 1) apple peel extract (APE); 2) grape extract (GE); 3) red raspberry leaf extract (RLE); 4) apricot/nectarine extract (ANE) with IC50 values in cell-free assay of 1.4, 5.6, 10.4 and 3.4 μg/mL, respectively (Fig. 4a). In the cellular DGAT1 assay, all extracts inhibited TG synthesis ≥ 50 % at 100 and/or 300 μg/mL. While all botanical extracts were effective in this cellular assay, the GE was the most potent (greatest inhibition at the lowest dose) with APE and RLE having equally potency, and ANE the least. (Fig. 4b, P < 0.001).Fig. 4


Identification of a botanical inhibitor of intestinal diacylglyceride acyltransferase 1 activity via in vitro screening and a parallel, randomized, blinded, placebo-controlled clinical trial.

Velliquette RA, Grann K, Missler SR, Patterson J, Hu C, Gellenbeck KW, Scholten JD, Randolph RK - Nutr Metab (Lond) (2015)

Percent DGAT1 enzyme inhibition and IC50 values for the four lead botanical extracts. a APE, GE, RLE and ANE exhibited dose responsive inhibition of DGAT1 enzyme activity in the cell-free assay. The IC50 values ranged from 1.41 to 10.4 μg/mL and 17.1 ng/mL for A-922500. Results are the mean of triplicates. b The cellular DGAT1 assay was comprised of adding [14C]-glycerol to label newly synthesized TG and 0.3 mM oleic acid/BSA to stimulate DGAT1 activity. All botanical extracts and A-922500 inhibited oleic acid induced DGAT1 enzyme activity as measured by 14C label TG levels. GE was statistically more potent than APE, RLE and ANE, defined as greatest inhibition at the lowest dose (100 μg/mL) (Two-way ANOVA with Bonferroni's multiple comparisons test; P < 0.001). Result are the mean ± SEM (n = 3). Different letters, within each dose, indicate statistically significant
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4526202&req=5

Fig4: Percent DGAT1 enzyme inhibition and IC50 values for the four lead botanical extracts. a APE, GE, RLE and ANE exhibited dose responsive inhibition of DGAT1 enzyme activity in the cell-free assay. The IC50 values ranged from 1.41 to 10.4 μg/mL and 17.1 ng/mL for A-922500. Results are the mean of triplicates. b The cellular DGAT1 assay was comprised of adding [14C]-glycerol to label newly synthesized TG and 0.3 mM oleic acid/BSA to stimulate DGAT1 activity. All botanical extracts and A-922500 inhibited oleic acid induced DGAT1 enzyme activity as measured by 14C label TG levels. GE was statistically more potent than APE, RLE and ANE, defined as greatest inhibition at the lowest dose (100 μg/mL) (Two-way ANOVA with Bonferroni's multiple comparisons test; P < 0.001). Result are the mean ± SEM (n = 3). Different letters, within each dose, indicate statistically significant
Mentions: Botanical extracts from an internal, proprietary botanical extract library were selected based on their predicted presence of the polyphenolic inhibitors presented in Fig. 3, and screened through the cell-free DGAT1 assay. Four lead botanical extracts emerged from the library screening (Fig. 4): 1) apple peel extract (APE); 2) grape extract (GE); 3) red raspberry leaf extract (RLE); 4) apricot/nectarine extract (ANE) with IC50 values in cell-free assay of 1.4, 5.6, 10.4 and 3.4 μg/mL, respectively (Fig. 4a). In the cellular DGAT1 assay, all extracts inhibited TG synthesis ≥ 50 % at 100 and/or 300 μg/mL. While all botanical extracts were effective in this cellular assay, the GE was the most potent (greatest inhibition at the lowest dose) with APE and RLE having equally potency, and ANE the least. (Fig. 4b, P < 0.001).Fig. 4

Bottom Line: Phenolic acids (i.e., gallic acid) and polyphenols (i.e., cyanidin) abundantly found in nature appeared to inhibit DGAT1 enzyme activity in vitro.Four polyphenolic rich botanical extracts were identified from in vitro evaluation in both cell-free and cellular model systems: apple peel extract (APE), grape extract (GE), red raspberry leaf extract (RLE) and apricot/nectarine extract (ANE) (IC50 = 1.4, 5.6, and 10.4 and 3.4 μg/mL, respectively).These data suggest that a dietary GE has the potential to attenuate postprandial hypertriglyceridemia in part by the inhibition of intestinal DGAT1 enzyme activity without intolerable side effects.

View Article: PubMed Central - PubMed

Affiliation: Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA.

ABSTRACT

Background: Diacylglyceride acyltransferase 1 (DGAT1) is the enzyme that adds the final fatty acid on to a diacylglyceride during triglyceride (TG) synthesis. DGAT1 plays a key role in the repackaging of dietary TG into circulating TG rich chylomicrons. A growing amount of research has indicated that an exaggerated postprandial circulating TG level is a risk indicator for cardiovascular and metabolic disorders. The aim of this research was to identify a botanical extract that inhibits intestinal DGAT1 activity and attenuates postprandial hypertriglyceridemia in overweight and obese humans.

Methods: Twenty individual phytochemicals and an internal proprietary botanical extract library were screened with a primary cell-free DGAT1 enzyme assay that contained dioleoyl glycerol and palmitoleoyl Coenzyme A as substrates plus human intestinal microsomes as the DGAT1 enzyme source. Botanical extracts with IC50 values < 100 μg/mL were evaluated in a cellular DGAT1 assay. The cellular DGAT1 assay comprised the analysis of (14)C labeled TG synthesis in cells incubated with (14)C-glycerol and 0.3 mM oleic acid. Lead botanical extracts were then evaluated in a parallel, double-blind, placebo-controlled clinical trial. Ninety healthy, overweight and obese participants were randomized to receive 2 g daily of placebo or individual botanical extracts (the investigational product) for seven days. Serum TG levels were measured before and after consuming a high fat meal (HFM) challenge (0.354 L drink/shake; 77 g fat, 25 g carbohydrate and 9 g protein) as a marker of intestinal DGAT1 enzyme activity.

Results: Phenolic acids (i.e., gallic acid) and polyphenols (i.e., cyanidin) abundantly found in nature appeared to inhibit DGAT1 enzyme activity in vitro. Four polyphenolic rich botanical extracts were identified from in vitro evaluation in both cell-free and cellular model systems: apple peel extract (APE), grape extract (GE), red raspberry leaf extract (RLE) and apricot/nectarine extract (ANE) (IC50 = 1.4, 5.6, and 10.4 and 3.4 μg/mL, respectively). In the seven day clinical trial, compared to placebo, only GE significantly reduced the baseline subtracted change in serum TG AUC following consumption of the HFM (AUC = 281 ± 37 vs. 181 ± 30 mg/dL*h, respectively; P = 0.021). Chromatographic characterization of the GE revealed a large number of closely eluting components containing proanthocyanidins, catechins, anthocyanins and their secondary metabolites that corresponded with the observed DGAT1 enzyme inhibition in the cell-free model.

Conclusion: These data suggest that a dietary GE has the potential to attenuate postprandial hypertriglyceridemia in part by the inhibition of intestinal DGAT1 enzyme activity without intolerable side effects.

Trial registration: This trial was registered with ClinicalTrials.gov NCT02333461.

No MeSH data available.


Related in: MedlinePlus