Limits...
Numerical optimization of targeted delivery of charged nanoparticles to the ostiomeatal complex for treatment of rhinosinusitis.

Xi J, Yuan JE, Si XA, Hasbany J - Int J Nanomedicine (2015)

Bottom Line: Through the synthesis of electric guidance and point drug release, the new delivery system eliminated particle deposition in the nasal valve and turbinate regions and significantly enhanced the OMC doses.The OMC dose increased from 45.0% in the baseline model to 72.4% in the optimized system.The optimization framework developed in this study can be easily adapted for the delivery of drugs to other sites in the nose such as the ethmoid sinus and olfactory region.

View Article: PubMed Central - PubMed

Affiliation: School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA.

ABSTRACT

Background: Despite the prevalence of rhinosinusitis that affects 10%-15% of the population, current inhalation therapy shows limited efficacy. Standard devices deliver <5% of the drugs to the sinuses due to the complexity of nose structure, secluded location of the sinus, poor ventilation, and lack of control of particle motions inside the nasal cavity.

Methods: An electric-guided delivery system was developed to guide charged particles to the ostiomeatal complex (OMC). Its performance was numerically assessed in an MRI-based nose-sinus model. Key design variables related to the delivery device, drug particles, and patient breathing were determined using sensitivity analysis. A two-stage optimization of design variables was conducted to obtain the best performance of the delivery system using the Nelder-Mead algorithm.

Results and discussion: The OMC delivery system exhibited high sensitivity to the applied electric field and electrostatic charges carried by the particles. Through the synthesis of electric guidance and point drug release, the new delivery system eliminated particle deposition in the nasal valve and turbinate regions and significantly enhanced the OMC doses. An OMC delivery efficiency of 72.4% was obtained with the optimized design, which is one order of magnitude higher than the standard nasal devices. Moreover, optimization is imperative to achieve a sound delivery protocol because of the large number of design variables. The OMC dose increased from 45.0% in the baseline model to 72.4% in the optimized system. The optimization framework developed in this study can be easily adapted for the delivery of drugs to other sites in the nose such as the ethmoid sinus and olfactory region.

No MeSH data available.


Related in: MedlinePlus

Deposition with optimized design.Notes: (A) Particle deposition pattern, and (B) time evolution of OMC depositions.Abbreviations: OMC, ostiomeatal complex; s, seconds.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4525801&req=5

f9-ijn-10-4847: Deposition with optimized design.Notes: (A) Particle deposition pattern, and (B) time evolution of OMC depositions.Abbreviations: OMC, ostiomeatal complex; s, seconds.

Mentions: Effective drug delivery to the OMC depends on the synergy of many factors. Single-component optimization can underestimate the optimal dosages. A full optimization was performed by considering all the three categories of design factors simultaneously. The computational time in this scenario was 148 hours using a 3.2 GHz Dell Precision workstation. Figure 7 shows the results of the baseline and optimized designs, with the optimized design variables listed in Table 1. From Figure 9, a 27.4% increase in OMC delivery efficiency was achieved in the optimal design (72.4%) relative to the baseline model (45.0%). The drug loss in the turbinate regions was significantly reduced. In particular, depositions in the nasal valve were entirely avoided (Figures 9A vs 5C). Depositions of drug particles in the optimal design are more focused than those in the baseline model (Figures 9A vs 5C).


Numerical optimization of targeted delivery of charged nanoparticles to the ostiomeatal complex for treatment of rhinosinusitis.

Xi J, Yuan JE, Si XA, Hasbany J - Int J Nanomedicine (2015)

Deposition with optimized design.Notes: (A) Particle deposition pattern, and (B) time evolution of OMC depositions.Abbreviations: OMC, ostiomeatal complex; s, seconds.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4525801&req=5

f9-ijn-10-4847: Deposition with optimized design.Notes: (A) Particle deposition pattern, and (B) time evolution of OMC depositions.Abbreviations: OMC, ostiomeatal complex; s, seconds.
Mentions: Effective drug delivery to the OMC depends on the synergy of many factors. Single-component optimization can underestimate the optimal dosages. A full optimization was performed by considering all the three categories of design factors simultaneously. The computational time in this scenario was 148 hours using a 3.2 GHz Dell Precision workstation. Figure 7 shows the results of the baseline and optimized designs, with the optimized design variables listed in Table 1. From Figure 9, a 27.4% increase in OMC delivery efficiency was achieved in the optimal design (72.4%) relative to the baseline model (45.0%). The drug loss in the turbinate regions was significantly reduced. In particular, depositions in the nasal valve were entirely avoided (Figures 9A vs 5C). Depositions of drug particles in the optimal design are more focused than those in the baseline model (Figures 9A vs 5C).

Bottom Line: Through the synthesis of electric guidance and point drug release, the new delivery system eliminated particle deposition in the nasal valve and turbinate regions and significantly enhanced the OMC doses.The OMC dose increased from 45.0% in the baseline model to 72.4% in the optimized system.The optimization framework developed in this study can be easily adapted for the delivery of drugs to other sites in the nose such as the ethmoid sinus and olfactory region.

View Article: PubMed Central - PubMed

Affiliation: School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA.

ABSTRACT

Background: Despite the prevalence of rhinosinusitis that affects 10%-15% of the population, current inhalation therapy shows limited efficacy. Standard devices deliver <5% of the drugs to the sinuses due to the complexity of nose structure, secluded location of the sinus, poor ventilation, and lack of control of particle motions inside the nasal cavity.

Methods: An electric-guided delivery system was developed to guide charged particles to the ostiomeatal complex (OMC). Its performance was numerically assessed in an MRI-based nose-sinus model. Key design variables related to the delivery device, drug particles, and patient breathing were determined using sensitivity analysis. A two-stage optimization of design variables was conducted to obtain the best performance of the delivery system using the Nelder-Mead algorithm.

Results and discussion: The OMC delivery system exhibited high sensitivity to the applied electric field and electrostatic charges carried by the particles. Through the synthesis of electric guidance and point drug release, the new delivery system eliminated particle deposition in the nasal valve and turbinate regions and significantly enhanced the OMC doses. An OMC delivery efficiency of 72.4% was obtained with the optimized design, which is one order of magnitude higher than the standard nasal devices. Moreover, optimization is imperative to achieve a sound delivery protocol because of the large number of design variables. The OMC dose increased from 45.0% in the baseline model to 72.4% in the optimized system. The optimization framework developed in this study can be easily adapted for the delivery of drugs to other sites in the nose such as the ethmoid sinus and olfactory region.

No MeSH data available.


Related in: MedlinePlus