Limits...
Plasma membrane proteomic analysis of human Gastric Cancer tissues: revealing flotillin 1 as a marker for Gastric Cancer.

Gao W, Xu J, Wang F, Zhang L, Peng R, Shu Y, Wu J, Tang Q, Zhu Y - BMC Cancer (2015)

Bottom Line: Of a total data set that included 501 identified proteins, about 35% of the identified proteins were found to be plasma membrane and associated proteins.Additionally, several potential biomarkers participated in endocytosis pathway and integrin signaling pathways were firstly identified as differentially expressed proteins in GC samples.Together, the results show that subcellular proteomics of tumor tissue is a feasible and promising avenue for exploring oncogenesis.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Road, Nanjing, 210029, China. Yoghurt831030@126.Com.

ABSTRACT

Background: Gastric cancer remains the second leading cause of cancer-related deaths in the world. Successful early gastric cancer detection is hampered by lack of highly sensitive and specific biomarkers. Plasma membrane proteins participate and/or have a central role in the metastatic process of cancer cells and are potentially useful for cancer therapy due to easy accessibility of the targets.

Methods: In the present research, TMT method followed by mass spectrometry analysis was used to compare the relative expression levels of plasma membrane proteins between noncancer and gastric cancer tissues.

Results: Of a total data set that included 501 identified proteins, about 35% of the identified proteins were found to be plasma membrane and associated proteins. Among them, 82 proteins were at least 1.5-fold up- or down-regulated in gastric cancer compared with the adherent normal tissues.

Conclusions: A number of markers (e.g. annexin A6, caveolin 1, epidermal growth factor receptor, integrin beta 4) were previously reported as biomarkers of GC. Additionally, several potential biomarkers participated in endocytosis pathway and integrin signaling pathways were firstly identified as differentially expressed proteins in GC samples. Our findings also supported the notion that flotillin 1 is a potential biomarker that could be exploited for molecular imaging-based detection of gastric cancer. Together, the results show that subcellular proteomics of tumor tissue is a feasible and promising avenue for exploring oncogenesis.

No MeSH data available.


Related in: MedlinePlus

A representative western blot analysis from one of the pools to validate results from TMT labeling. (A) Plasma membrane proteins of GC and control tissues were analyzed by Western blot using antibodies against sigma non-opioid intracellular receptor 1, flotillin 1, CD 36 and CD9. (B) The levels of non-opioid intracellular receptor 1, flotillin 1, CD 36 and CD 9 were normalized relative to GAPDH levels. Data represent mean values ± SEM.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4525731&req=5

Fig6: A representative western blot analysis from one of the pools to validate results from TMT labeling. (A) Plasma membrane proteins of GC and control tissues were analyzed by Western blot using antibodies against sigma non-opioid intracellular receptor 1, flotillin 1, CD 36 and CD9. (B) The levels of non-opioid intracellular receptor 1, flotillin 1, CD 36 and CD 9 were normalized relative to GAPDH levels. Data represent mean values ± SEM.

Mentions: Western blot analyses were performed on selected candidates (sigma non-opioid intracellular receptor 1, flotillin 1, CD 36 and CD9 molecule). These candidates were chosen based on the plasma membrane markers not known previously reported to be differentially expressed in gastric cancer since the key objective of this study is to identify potential biomarkers of GC. Figure 6 shows that the up- or down-regulation trend of candidate proteins between GC and normal tissue revealed by the Western blot data is congruent with that revealed by quantitative proteomic method. A positive correlation for the direction of changes was observed. The result of western blotting provides evidence that the TMT labeling method for the large scale protein quantification was reliable.Figure 6


Plasma membrane proteomic analysis of human Gastric Cancer tissues: revealing flotillin 1 as a marker for Gastric Cancer.

Gao W, Xu J, Wang F, Zhang L, Peng R, Shu Y, Wu J, Tang Q, Zhu Y - BMC Cancer (2015)

A representative western blot analysis from one of the pools to validate results from TMT labeling. (A) Plasma membrane proteins of GC and control tissues were analyzed by Western blot using antibodies against sigma non-opioid intracellular receptor 1, flotillin 1, CD 36 and CD9. (B) The levels of non-opioid intracellular receptor 1, flotillin 1, CD 36 and CD 9 were normalized relative to GAPDH levels. Data represent mean values ± SEM.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4525731&req=5

Fig6: A representative western blot analysis from one of the pools to validate results from TMT labeling. (A) Plasma membrane proteins of GC and control tissues were analyzed by Western blot using antibodies against sigma non-opioid intracellular receptor 1, flotillin 1, CD 36 and CD9. (B) The levels of non-opioid intracellular receptor 1, flotillin 1, CD 36 and CD 9 were normalized relative to GAPDH levels. Data represent mean values ± SEM.
Mentions: Western blot analyses were performed on selected candidates (sigma non-opioid intracellular receptor 1, flotillin 1, CD 36 and CD9 molecule). These candidates were chosen based on the plasma membrane markers not known previously reported to be differentially expressed in gastric cancer since the key objective of this study is to identify potential biomarkers of GC. Figure 6 shows that the up- or down-regulation trend of candidate proteins between GC and normal tissue revealed by the Western blot data is congruent with that revealed by quantitative proteomic method. A positive correlation for the direction of changes was observed. The result of western blotting provides evidence that the TMT labeling method for the large scale protein quantification was reliable.Figure 6

Bottom Line: Of a total data set that included 501 identified proteins, about 35% of the identified proteins were found to be plasma membrane and associated proteins.Additionally, several potential biomarkers participated in endocytosis pathway and integrin signaling pathways were firstly identified as differentially expressed proteins in GC samples.Together, the results show that subcellular proteomics of tumor tissue is a feasible and promising avenue for exploring oncogenesis.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Road, Nanjing, 210029, China. Yoghurt831030@126.Com.

ABSTRACT

Background: Gastric cancer remains the second leading cause of cancer-related deaths in the world. Successful early gastric cancer detection is hampered by lack of highly sensitive and specific biomarkers. Plasma membrane proteins participate and/or have a central role in the metastatic process of cancer cells and are potentially useful for cancer therapy due to easy accessibility of the targets.

Methods: In the present research, TMT method followed by mass spectrometry analysis was used to compare the relative expression levels of plasma membrane proteins between noncancer and gastric cancer tissues.

Results: Of a total data set that included 501 identified proteins, about 35% of the identified proteins were found to be plasma membrane and associated proteins. Among them, 82 proteins were at least 1.5-fold up- or down-regulated in gastric cancer compared with the adherent normal tissues.

Conclusions: A number of markers (e.g. annexin A6, caveolin 1, epidermal growth factor receptor, integrin beta 4) were previously reported as biomarkers of GC. Additionally, several potential biomarkers participated in endocytosis pathway and integrin signaling pathways were firstly identified as differentially expressed proteins in GC samples. Our findings also supported the notion that flotillin 1 is a potential biomarker that could be exploited for molecular imaging-based detection of gastric cancer. Together, the results show that subcellular proteomics of tumor tissue is a feasible and promising avenue for exploring oncogenesis.

No MeSH data available.


Related in: MedlinePlus