Limits...
Interpreting pathologies in extant and extinct archosaurs using micro-CT.

Anné J, Garwood RJ, Lowe T, Withers PJ, Manning PL - PeerJ (2015)

Bottom Line: Palaeopathology offers unique insight to the healing strategies of extinct organisms, permitting questions concerning bone physiology to be answered in greater depth.Furthermore, we show that the use of comparative species, both through direct analysis and from the literature, provides key information for diagnosing between vertebrate groups in the typical pathological conditions and physiological processes.Micro-CT imaging, combined with comparative observations of extant species, provides more detailed and reliable interpretation of palaeopathologies.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Earth, Atmospheric and Environmental Sciences, University of Manchester , Manchester , UK.

ABSTRACT
Palaeopathology offers unique insight to the healing strategies of extinct organisms, permitting questions concerning bone physiology to be answered in greater depth. Unfortunately, most palaeopathological studies are confined to external morphological interpretations due to the destructive nature of traditional methods of study. This limits the degree of reliable diagnosis and interpretation possible. X-ray MicroTomography (micro-CT, XMT) provides a non-destructive means of analysing the internal three-dimensional structure of pathologies in both extant and extinct individuals, at higher resolutions than possible with medical scanners. In this study, we present external and internal descriptions of pathologies in extant and extinct archosaurs using XMT. This work demonstrates that the combination of external/internal diagnosis that X-ray microtomography facilitates is crucial when differentiating between pathological conditions. Furthermore, we show that the use of comparative species, both through direct analysis and from the literature, provides key information for diagnosing between vertebrate groups in the typical pathological conditions and physiological processes. Micro-CT imaging, combined with comparative observations of extant species, provides more detailed and reliable interpretation of palaeopathologies. Micro-CT is an increasingly accessible tool, which will provide key insights for correctly interpreting vertebrate pathologies in the future.

No MeSH data available.


Related in: MedlinePlus

E. annectens (BHI 6184) dorsal rib; photograph of the specimen in rostral-caudal view with magnified image of the ‘folded tissue’ (A) and XMT slices in rostral-caudal (B), medial-lateral (C) and transverse (D) views.The reactive bone growth is localised to one side of the rib (red boxes B, D). There are no signs of trauma, though smaller fractures may be concealed within the pathological mass. The “folded” morphology of the pathological mass is seen as an outgrowth of bone (red arrow C). Scale bar is 1 cm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4525691&req=5

fig-5: E. annectens (BHI 6184) dorsal rib; photograph of the specimen in rostral-caudal view with magnified image of the ‘folded tissue’ (A) and XMT slices in rostral-caudal (B), medial-lateral (C) and transverse (D) views.The reactive bone growth is localised to one side of the rib (red boxes B, D). There are no signs of trauma, though smaller fractures may be concealed within the pathological mass. The “folded” morphology of the pathological mass is seen as an outgrowth of bone (red arrow C). Scale bar is 1 cm.

Mentions: BHI 6184: Externally, the exostosis expands radially from the E. annectens rib with no distinguishable boundary between the pathological and normal tissues (Fig. 5). The ‘pursed’ external morphology is seen internally as a secondary protrusion in medial-lateral view (Fig. 5C) and as a simple outgrowth of reactive bone in dorsal-ventral and transverse views (Figs. 5B and 5D). The original hypothesis suggested that the growth of bone occurred around an embedded foreign object such as a tooth, which has been seen in other hadrosaurians (DePalma et al., 2013). However, there is no indication here of an embedded fragment.


Interpreting pathologies in extant and extinct archosaurs using micro-CT.

Anné J, Garwood RJ, Lowe T, Withers PJ, Manning PL - PeerJ (2015)

E. annectens (BHI 6184) dorsal rib; photograph of the specimen in rostral-caudal view with magnified image of the ‘folded tissue’ (A) and XMT slices in rostral-caudal (B), medial-lateral (C) and transverse (D) views.The reactive bone growth is localised to one side of the rib (red boxes B, D). There are no signs of trauma, though smaller fractures may be concealed within the pathological mass. The “folded” morphology of the pathological mass is seen as an outgrowth of bone (red arrow C). Scale bar is 1 cm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4525691&req=5

fig-5: E. annectens (BHI 6184) dorsal rib; photograph of the specimen in rostral-caudal view with magnified image of the ‘folded tissue’ (A) and XMT slices in rostral-caudal (B), medial-lateral (C) and transverse (D) views.The reactive bone growth is localised to one side of the rib (red boxes B, D). There are no signs of trauma, though smaller fractures may be concealed within the pathological mass. The “folded” morphology of the pathological mass is seen as an outgrowth of bone (red arrow C). Scale bar is 1 cm.
Mentions: BHI 6184: Externally, the exostosis expands radially from the E. annectens rib with no distinguishable boundary between the pathological and normal tissues (Fig. 5). The ‘pursed’ external morphology is seen internally as a secondary protrusion in medial-lateral view (Fig. 5C) and as a simple outgrowth of reactive bone in dorsal-ventral and transverse views (Figs. 5B and 5D). The original hypothesis suggested that the growth of bone occurred around an embedded foreign object such as a tooth, which has been seen in other hadrosaurians (DePalma et al., 2013). However, there is no indication here of an embedded fragment.

Bottom Line: Palaeopathology offers unique insight to the healing strategies of extinct organisms, permitting questions concerning bone physiology to be answered in greater depth.Furthermore, we show that the use of comparative species, both through direct analysis and from the literature, provides key information for diagnosing between vertebrate groups in the typical pathological conditions and physiological processes.Micro-CT imaging, combined with comparative observations of extant species, provides more detailed and reliable interpretation of palaeopathologies.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Earth, Atmospheric and Environmental Sciences, University of Manchester , Manchester , UK.

ABSTRACT
Palaeopathology offers unique insight to the healing strategies of extinct organisms, permitting questions concerning bone physiology to be answered in greater depth. Unfortunately, most palaeopathological studies are confined to external morphological interpretations due to the destructive nature of traditional methods of study. This limits the degree of reliable diagnosis and interpretation possible. X-ray MicroTomography (micro-CT, XMT) provides a non-destructive means of analysing the internal three-dimensional structure of pathologies in both extant and extinct individuals, at higher resolutions than possible with medical scanners. In this study, we present external and internal descriptions of pathologies in extant and extinct archosaurs using XMT. This work demonstrates that the combination of external/internal diagnosis that X-ray microtomography facilitates is crucial when differentiating between pathological conditions. Furthermore, we show that the use of comparative species, both through direct analysis and from the literature, provides key information for diagnosing between vertebrate groups in the typical pathological conditions and physiological processes. Micro-CT imaging, combined with comparative observations of extant species, provides more detailed and reliable interpretation of palaeopathologies. Micro-CT is an increasingly accessible tool, which will provide key insights for correctly interpreting vertebrate pathologies in the future.

No MeSH data available.


Related in: MedlinePlus