Limits...
A kinematic study on (un)intentional imitation in bottlenose dolphins.

Sartori L, Bulgheroni M, Tizzi R, Castiello U - Front Hum Neurosci (2015)

Bottom Line: The aim of the present study was to investigate the effect of observing other's movements on subsequent performance in bottlenose dolphins.The results indicate that dolphins' kinematics is sensitive to other's movement features.In closing, this will clarify whether motor representational capacity is a by-product of factors specific to humans or whether more general characteristics such as processes of associative learning prompted by high level of encephalization could help to explain the evolution of this ability.

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Psicologia Generale, Università di Padova Padova, Italy ; Cognitive Neuroscience Center, Università di Padova Padova, Italy.

ABSTRACT
The aim of the present study was to investigate the effect of observing other's movements on subsequent performance in bottlenose dolphins. The imitative ability of non-human animals has intrigued a number of researchers. So far, however, studies in dolphins have been confined to intentional imitation concerned with the explicit request to imitate other agents. In the absence of instruction to imitate, do dolphins (un)intentionally replicate other's movement features? To test this, dolphins were filmed while reaching and touching a stimulus before and after observing another dolphin (i.e., model) performing the same action. All videos were reviewed and segmented in order to extract the relevant movements. A marker was inserted post hoc via software on the videos upon the anatomical landmark of interest (i.e., rostrum) and was tracked throughout the time course of the movement sequence. The movement was analyzed using an in-house software developed to perform two-dimensional (2D) post hoc kinematic analysis. The results indicate that dolphins' kinematics is sensitive to other's movement features. Movements performed for the "visuomotor priming" condition were characterized by a kinematic pattern similar to that performed by the observed dolphin (i.e., model). Addressing the issue of spontaneous imitation in bottlenose dolphins might allow ascertaining whether the potential or impulse to produce an imitative action is generated, not just when they intend to imitate, but whenever they watch another conspecific's behavior. In closing, this will clarify whether motor representational capacity is a by-product of factors specific to humans or whether more general characteristics such as processes of associative learning prompted by high level of encephalization could help to explain the evolution of this ability.

No MeSH data available.


Related in: MedlinePlus

Aerial view of the pool (20 m in diameter; capacity 1300 m3, surface 310 m2 and maximum depth of 5 m) and relative position of the target stimulus, video camera and trainer’s platform.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4525491&req=5

Figure 1: Aerial view of the pool (20 m in diameter; capacity 1300 m3, surface 310 m2 and maximum depth of 5 m) and relative position of the target stimulus, video camera and trainer’s platform.

Mentions: Two adult bottlenose dolphins (Tursiops truncatus, S. and L., male and female, 20 and 21 years respectively) participated in the study. They swam in a pool of a round shape (20 m in diameter; capacity 1300 m3, surface 310 m2 and maximum depth of 5 m; Figure 1). The experimental procedure for the dolphins was approved by the committee for animal research of the University of Padova and adhered to the Ethical Guidelines for the Conduct of Research on Animals by Zoos and Aquariums issued by the World Association of Zoos and Aquariums (WAZA).


A kinematic study on (un)intentional imitation in bottlenose dolphins.

Sartori L, Bulgheroni M, Tizzi R, Castiello U - Front Hum Neurosci (2015)

Aerial view of the pool (20 m in diameter; capacity 1300 m3, surface 310 m2 and maximum depth of 5 m) and relative position of the target stimulus, video camera and trainer’s platform.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4525491&req=5

Figure 1: Aerial view of the pool (20 m in diameter; capacity 1300 m3, surface 310 m2 and maximum depth of 5 m) and relative position of the target stimulus, video camera and trainer’s platform.
Mentions: Two adult bottlenose dolphins (Tursiops truncatus, S. and L., male and female, 20 and 21 years respectively) participated in the study. They swam in a pool of a round shape (20 m in diameter; capacity 1300 m3, surface 310 m2 and maximum depth of 5 m; Figure 1). The experimental procedure for the dolphins was approved by the committee for animal research of the University of Padova and adhered to the Ethical Guidelines for the Conduct of Research on Animals by Zoos and Aquariums issued by the World Association of Zoos and Aquariums (WAZA).

Bottom Line: The aim of the present study was to investigate the effect of observing other's movements on subsequent performance in bottlenose dolphins.The results indicate that dolphins' kinematics is sensitive to other's movement features.In closing, this will clarify whether motor representational capacity is a by-product of factors specific to humans or whether more general characteristics such as processes of associative learning prompted by high level of encephalization could help to explain the evolution of this ability.

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Psicologia Generale, Università di Padova Padova, Italy ; Cognitive Neuroscience Center, Università di Padova Padova, Italy.

ABSTRACT
The aim of the present study was to investigate the effect of observing other's movements on subsequent performance in bottlenose dolphins. The imitative ability of non-human animals has intrigued a number of researchers. So far, however, studies in dolphins have been confined to intentional imitation concerned with the explicit request to imitate other agents. In the absence of instruction to imitate, do dolphins (un)intentionally replicate other's movement features? To test this, dolphins were filmed while reaching and touching a stimulus before and after observing another dolphin (i.e., model) performing the same action. All videos were reviewed and segmented in order to extract the relevant movements. A marker was inserted post hoc via software on the videos upon the anatomical landmark of interest (i.e., rostrum) and was tracked throughout the time course of the movement sequence. The movement was analyzed using an in-house software developed to perform two-dimensional (2D) post hoc kinematic analysis. The results indicate that dolphins' kinematics is sensitive to other's movement features. Movements performed for the "visuomotor priming" condition were characterized by a kinematic pattern similar to that performed by the observed dolphin (i.e., model). Addressing the issue of spontaneous imitation in bottlenose dolphins might allow ascertaining whether the potential or impulse to produce an imitative action is generated, not just when they intend to imitate, but whenever they watch another conspecific's behavior. In closing, this will clarify whether motor representational capacity is a by-product of factors specific to humans or whether more general characteristics such as processes of associative learning prompted by high level of encephalization could help to explain the evolution of this ability.

No MeSH data available.


Related in: MedlinePlus