Limits...
Role of fatty acids in Bacillus environmental adaptation.

Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J - Front Microbiol (2015)

Bottom Line: Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species.Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH.Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment.

View Article: PubMed Central - PubMed

Affiliation: INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France.

ABSTRACT
The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness.

No MeSH data available.


Related in: MedlinePlus

Bacillus FAS II pathway and FA integration into phospholipids. The enzymes are identified in bold. The FapR major regulator of this pathway is represented, and enzymes which encoding genes belong to the fap regulon are indicated in green. Red blunt-head lines indicate a repression. AccABCD, acetyl-CoA carboxylase ABCD; FapR, fatty acid and phospholipid biosynthesis regulator; FabD, malonyl-CoA:ACP transacylase; FabH, β-ketoacyl-ACP synthase III, FabZ, β-hydroxyacyl-ACP dehydratase, FabI, enoyl-ACP reductase I; FabL, enoyl-ACP reductase III; FabF, β-ketoacyl-ACP synthase II; PlsX, acyl-acyl-ACP-phosphate acyltransferase; PlsY, acyl-phosphate- glycerol-phosphate acyltransferase; PlsC, 1-acylglycerol-3-P acyltransferase; Des, desaturase.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4525379&req=5

Figure 2: Bacillus FAS II pathway and FA integration into phospholipids. The enzymes are identified in bold. The FapR major regulator of this pathway is represented, and enzymes which encoding genes belong to the fap regulon are indicated in green. Red blunt-head lines indicate a repression. AccABCD, acetyl-CoA carboxylase ABCD; FapR, fatty acid and phospholipid biosynthesis regulator; FabD, malonyl-CoA:ACP transacylase; FabH, β-ketoacyl-ACP synthase III, FabZ, β-hydroxyacyl-ACP dehydratase, FabI, enoyl-ACP reductase I; FabL, enoyl-ACP reductase III; FabF, β-ketoacyl-ACP synthase II; PlsX, acyl-acyl-ACP-phosphate acyltransferase; PlsY, acyl-phosphate- glycerol-phosphate acyltransferase; PlsC, 1-acylglycerol-3-P acyltransferase; Des, desaturase.

Mentions: The biosynthesis of FAs is the first step in the formation of membrane lipids and represents a vital feature of bacterial physiology. This pathway has been extensively studied in Gram-negative Escherichia coli and Gram-positive Bacillus subtilis, which serve as models for understanding type II systems in other bacteria. The basic steps of the FAS cycle are common to all bacteria, and the genes encoding the enzymes are generally conserved (Marrakchi et al., 2002). We will describe the pathway that has been studied in B subtilis (Marrakchi et al., 2002; White et al., 2005; see Figure 2), highlighting differences in comparison to E. coli.


Role of fatty acids in Bacillus environmental adaptation.

Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J - Front Microbiol (2015)

Bacillus FAS II pathway and FA integration into phospholipids. The enzymes are identified in bold. The FapR major regulator of this pathway is represented, and enzymes which encoding genes belong to the fap regulon are indicated in green. Red blunt-head lines indicate a repression. AccABCD, acetyl-CoA carboxylase ABCD; FapR, fatty acid and phospholipid biosynthesis regulator; FabD, malonyl-CoA:ACP transacylase; FabH, β-ketoacyl-ACP synthase III, FabZ, β-hydroxyacyl-ACP dehydratase, FabI, enoyl-ACP reductase I; FabL, enoyl-ACP reductase III; FabF, β-ketoacyl-ACP synthase II; PlsX, acyl-acyl-ACP-phosphate acyltransferase; PlsY, acyl-phosphate- glycerol-phosphate acyltransferase; PlsC, 1-acylglycerol-3-P acyltransferase; Des, desaturase.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4525379&req=5

Figure 2: Bacillus FAS II pathway and FA integration into phospholipids. The enzymes are identified in bold. The FapR major regulator of this pathway is represented, and enzymes which encoding genes belong to the fap regulon are indicated in green. Red blunt-head lines indicate a repression. AccABCD, acetyl-CoA carboxylase ABCD; FapR, fatty acid and phospholipid biosynthesis regulator; FabD, malonyl-CoA:ACP transacylase; FabH, β-ketoacyl-ACP synthase III, FabZ, β-hydroxyacyl-ACP dehydratase, FabI, enoyl-ACP reductase I; FabL, enoyl-ACP reductase III; FabF, β-ketoacyl-ACP synthase II; PlsX, acyl-acyl-ACP-phosphate acyltransferase; PlsY, acyl-phosphate- glycerol-phosphate acyltransferase; PlsC, 1-acylglycerol-3-P acyltransferase; Des, desaturase.
Mentions: The biosynthesis of FAs is the first step in the formation of membrane lipids and represents a vital feature of bacterial physiology. This pathway has been extensively studied in Gram-negative Escherichia coli and Gram-positive Bacillus subtilis, which serve as models for understanding type II systems in other bacteria. The basic steps of the FAS cycle are common to all bacteria, and the genes encoding the enzymes are generally conserved (Marrakchi et al., 2002). We will describe the pathway that has been studied in B subtilis (Marrakchi et al., 2002; White et al., 2005; see Figure 2), highlighting differences in comparison to E. coli.

Bottom Line: Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species.Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH.Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment.

View Article: PubMed Central - PubMed

Affiliation: INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France.

ABSTRACT
The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness.

No MeSH data available.


Related in: MedlinePlus