Limits...
Manipulating the banana rhizosphere microbiome for biological control of Panama disease.

Xue C, Penton CR, Shen Z, Zhang R, Huang Q, Li R, Ruan Y, Shen Q - Sci Rep (2015)

Bottom Line: Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield.Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield.In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease.

View Article: PubMed Central - PubMed

Affiliation: Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing, 210095, PR China.

ABSTRACT
Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA gene sequencing was used to assess the microbial community of a disease-suppressive soil. Bacillus was identified as the dominant bacterial group in the suppressive soil. For this reason, B. amyloliquefaciens NJN-6 isolated from the suppressive soil was selected as a potential bio-control agent. A bioorganic fertilizer (BIO), formulated by combining this isolate with compost, was applied in nursery pots to assess the bio-control of Panama disease. Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield. Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield. In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease.

No MeSH data available.


Related in: MedlinePlus

Number of Fusarium oxysporus f. sp. cubense (FOC) colony forming units (CFU) of disease-suppressive (CKH) and diseased (CKD) samples in the control treatment and healthy (BIOH) and diseased (BIOD) samples within the bioorganic fertilizer treatment.The significance of the difference was determined by one-way ANOVA (n = 4). Bars shared the same character represent a lack of significant difference (p > 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4525139&req=5

f4: Number of Fusarium oxysporus f. sp. cubense (FOC) colony forming units (CFU) of disease-suppressive (CKH) and diseased (CKD) samples in the control treatment and healthy (BIOH) and diseased (BIOD) samples within the bioorganic fertilizer treatment.The significance of the difference was determined by one-way ANOVA (n = 4). Bars shared the same character represent a lack of significant difference (p > 0.05).

Mentions: The number of F. oxysporum f. sp. cubense (FOC) colony forming units (CFU) in the banana rhizosphere was quantified by plating soil series dilutions on Komada’s selective medium K2 Petri plates for all samples collected in 2010. The FOC colonization was significantly lower in the disease-suppressive, compared to diseased soils (ANOVA, p < 0.05) (Fig. 4). All diseased samples in both treatments contained significantly higher rhizosphere FOC abundances (ANOVA, p < 0.05). Pearson correlations revealed that FOC colonization was highly correlated to plant disease incidence (r = 0.73, p < 0.05), unit yield (r = −0.92, p < 0.05) and plot yield (r = −0.85, p < 0.05).


Manipulating the banana rhizosphere microbiome for biological control of Panama disease.

Xue C, Penton CR, Shen Z, Zhang R, Huang Q, Li R, Ruan Y, Shen Q - Sci Rep (2015)

Number of Fusarium oxysporus f. sp. cubense (FOC) colony forming units (CFU) of disease-suppressive (CKH) and diseased (CKD) samples in the control treatment and healthy (BIOH) and diseased (BIOD) samples within the bioorganic fertilizer treatment.The significance of the difference was determined by one-way ANOVA (n = 4). Bars shared the same character represent a lack of significant difference (p > 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4525139&req=5

f4: Number of Fusarium oxysporus f. sp. cubense (FOC) colony forming units (CFU) of disease-suppressive (CKH) and diseased (CKD) samples in the control treatment and healthy (BIOH) and diseased (BIOD) samples within the bioorganic fertilizer treatment.The significance of the difference was determined by one-way ANOVA (n = 4). Bars shared the same character represent a lack of significant difference (p > 0.05).
Mentions: The number of F. oxysporum f. sp. cubense (FOC) colony forming units (CFU) in the banana rhizosphere was quantified by plating soil series dilutions on Komada’s selective medium K2 Petri plates for all samples collected in 2010. The FOC colonization was significantly lower in the disease-suppressive, compared to diseased soils (ANOVA, p < 0.05) (Fig. 4). All diseased samples in both treatments contained significantly higher rhizosphere FOC abundances (ANOVA, p < 0.05). Pearson correlations revealed that FOC colonization was highly correlated to plant disease incidence (r = 0.73, p < 0.05), unit yield (r = −0.92, p < 0.05) and plot yield (r = −0.85, p < 0.05).

Bottom Line: Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield.Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield.In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease.

View Article: PubMed Central - PubMed

Affiliation: Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing, 210095, PR China.

ABSTRACT
Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA gene sequencing was used to assess the microbial community of a disease-suppressive soil. Bacillus was identified as the dominant bacterial group in the suppressive soil. For this reason, B. amyloliquefaciens NJN-6 isolated from the suppressive soil was selected as a potential bio-control agent. A bioorganic fertilizer (BIO), formulated by combining this isolate with compost, was applied in nursery pots to assess the bio-control of Panama disease. Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield. Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield. In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease.

No MeSH data available.


Related in: MedlinePlus