Limits...
Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system.

Harris RM, Pfeiffer BD, Rubin GM, Truman JW - Elife (2015)

Bottom Line: The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking.The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff.These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior.

View Article: PubMed Central - PubMed

Affiliation: Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.

ABSTRACT
Drosophila central neurons arise from neuroblasts that generate neurons in a pair-wise fashion, with the two daughters providing the basis for distinct A and B hemilineage groups. 33 postembryonically-born hemilineages contribute over 90% of the neurons in each thoracic hemisegment. We devised genetic approaches to define the anatomy of most of these hemilineages and to assessed their functional roles using the heat-sensitive channel dTRPA1. The simplest hemilineages contained local interneurons and their activation caused tonic or phasic leg movements lacking interlimb coordination. The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking. The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff. These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior.

No MeSH data available.


Related in: MedlinePlus

Generation of a vPR6-specific line by intersecting hemilineage 12A and fru-LexA.(A, B) Parental expression patterns. (A) The fru-LexA expression pattern. The female thoracic pattern is a subset of the male pattern, and many of the neurons have dimorphic arbors. (B) Hemilineage 12A. Genotype: nSyb-GAL80 (su(Hw)attP8)/+; UAS-flp(attP40)/+; R24B02-GAL4/nSyb-LexA, LexAop>STOP>GFP. (C) The intersection of A and B, isolating the vPR6 neurons. Genotype: nSyb-GAL80(su(Hw)attP8); UASflp(attP40)/LexAop>STOP>GFP(attP40); R24B02-GAL4(attP2)/fru-LexA. Insets: the arbors and numbers of cells match digital representations of the complete vPR6 pattern in males (left) and females (right), adapted from Yu et al. 2010a.DOI:http://dx.doi.org/10.7554/eLife.04493.037
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4525104&req=5

fig8: Generation of a vPR6-specific line by intersecting hemilineage 12A and fru-LexA.(A, B) Parental expression patterns. (A) The fru-LexA expression pattern. The female thoracic pattern is a subset of the male pattern, and many of the neurons have dimorphic arbors. (B) Hemilineage 12A. Genotype: nSyb-GAL80 (su(Hw)attP8)/+; UAS-flp(attP40)/+; R24B02-GAL4/nSyb-LexA, LexAop>STOP>GFP. (C) The intersection of A and B, isolating the vPR6 neurons. Genotype: nSyb-GAL80(su(Hw)attP8); UASflp(attP40)/LexAop>STOP>GFP(attP40); R24B02-GAL4(attP2)/fru-LexA. Insets: the arbors and numbers of cells match digital representations of the complete vPR6 pattern in males (left) and females (right), adapted from Yu et al. 2010a.DOI:http://dx.doi.org/10.7554/eLife.04493.037

Mentions: The location and projection path of the vPR6 cells suggested that they were part of hemilineage 12A. We used the hemilineage 12A combination (including the 12A driver R24B02-GAL4, nSyb-GAL80, UAS-flippase, and pJFRC40-13XLexAop2-FRT>-STOP-FRT>-myr::GFP [Pfeiffer et al., 2010; Nern et al., 2011]) to restrict 13XLexAop2>myr::GFP expression in the VNS to the neurons of hemilineage 12A, then used fruP1.LexA (Mellert et al., 2010) to drive GFP expression in the subset of 12A neurons that were part of the fru pattern. This technique reliably captured a group of approximately 12 cells in males and 3–5 cells in females. The collected arbor shape of the fru+ hemilineage 12A neurons in both sexes matched the digitally masked arbor assigned to the vPR6 cluster (Figure 8) (Yu et al., 2010b). Thus, it is possible to identify the developmental origin of secondary neurons of interest and genetically isolate those neurons using the toolkit presented here.10.7554/eLife.04493.037Figure 8.Generation of a vPR6-specific line by intersecting hemilineage 12A and fru-LexA.


Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system.

Harris RM, Pfeiffer BD, Rubin GM, Truman JW - Elife (2015)

Generation of a vPR6-specific line by intersecting hemilineage 12A and fru-LexA.(A, B) Parental expression patterns. (A) The fru-LexA expression pattern. The female thoracic pattern is a subset of the male pattern, and many of the neurons have dimorphic arbors. (B) Hemilineage 12A. Genotype: nSyb-GAL80 (su(Hw)attP8)/+; UAS-flp(attP40)/+; R24B02-GAL4/nSyb-LexA, LexAop>STOP>GFP. (C) The intersection of A and B, isolating the vPR6 neurons. Genotype: nSyb-GAL80(su(Hw)attP8); UASflp(attP40)/LexAop>STOP>GFP(attP40); R24B02-GAL4(attP2)/fru-LexA. Insets: the arbors and numbers of cells match digital representations of the complete vPR6 pattern in males (left) and females (right), adapted from Yu et al. 2010a.DOI:http://dx.doi.org/10.7554/eLife.04493.037
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4525104&req=5

fig8: Generation of a vPR6-specific line by intersecting hemilineage 12A and fru-LexA.(A, B) Parental expression patterns. (A) The fru-LexA expression pattern. The female thoracic pattern is a subset of the male pattern, and many of the neurons have dimorphic arbors. (B) Hemilineage 12A. Genotype: nSyb-GAL80 (su(Hw)attP8)/+; UAS-flp(attP40)/+; R24B02-GAL4/nSyb-LexA, LexAop>STOP>GFP. (C) The intersection of A and B, isolating the vPR6 neurons. Genotype: nSyb-GAL80(su(Hw)attP8); UASflp(attP40)/LexAop>STOP>GFP(attP40); R24B02-GAL4(attP2)/fru-LexA. Insets: the arbors and numbers of cells match digital representations of the complete vPR6 pattern in males (left) and females (right), adapted from Yu et al. 2010a.DOI:http://dx.doi.org/10.7554/eLife.04493.037
Mentions: The location and projection path of the vPR6 cells suggested that they were part of hemilineage 12A. We used the hemilineage 12A combination (including the 12A driver R24B02-GAL4, nSyb-GAL80, UAS-flippase, and pJFRC40-13XLexAop2-FRT>-STOP-FRT>-myr::GFP [Pfeiffer et al., 2010; Nern et al., 2011]) to restrict 13XLexAop2>myr::GFP expression in the VNS to the neurons of hemilineage 12A, then used fruP1.LexA (Mellert et al., 2010) to drive GFP expression in the subset of 12A neurons that were part of the fru pattern. This technique reliably captured a group of approximately 12 cells in males and 3–5 cells in females. The collected arbor shape of the fru+ hemilineage 12A neurons in both sexes matched the digitally masked arbor assigned to the vPR6 cluster (Figure 8) (Yu et al., 2010b). Thus, it is possible to identify the developmental origin of secondary neurons of interest and genetically isolate those neurons using the toolkit presented here.10.7554/eLife.04493.037Figure 8.Generation of a vPR6-specific line by intersecting hemilineage 12A and fru-LexA.

Bottom Line: The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking.The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff.These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior.

View Article: PubMed Central - PubMed

Affiliation: Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.

ABSTRACT
Drosophila central neurons arise from neuroblasts that generate neurons in a pair-wise fashion, with the two daughters providing the basis for distinct A and B hemilineage groups. 33 postembryonically-born hemilineages contribute over 90% of the neurons in each thoracic hemisegment. We devised genetic approaches to define the anatomy of most of these hemilineages and to assessed their functional roles using the heat-sensitive channel dTRPA1. The simplest hemilineages contained local interneurons and their activation caused tonic or phasic leg movements lacking interlimb coordination. The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking. The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff. These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior.

No MeSH data available.


Related in: MedlinePlus