Limits...
Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques.

Petříčková K, Chroňáková A, Zelenka T, Chrudimský T, Pospíšil S, Petříček M, Krištůfek V - Front Microbiol (2015)

Bottom Line: Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains.Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms.Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.

View Article: PubMed Central - PubMed

Affiliation: Institute of Microbiology, Czech Academy of Sciences, v. v. i. Prague, Czech Republic.

ABSTRACT
A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike "classical" primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of "classical" ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.

No MeSH data available.


Related in: MedlinePlus

Moenomycin and bafilomycin biosynthetic genes clusters. (A) Rearrangement of the moenomycin- and bafilomycin-type clusters in some producers of moenomycin. PKS genes are shown in black, modules indicated by numbers. Bafilomycin biosynthetic genes outlined in black (PKS genes in filled black, tailoring genes filled gray), moenomycin in gray. Homologous regions identified in isolates Nos. BCCO10_398 and BCCO_628 are shown as black rectangles. (B) Domain organization within PKS genes – comparison of closely related clusters encoding biosynthesis of bafilomycin B1 and L-155,175. Specificity of AT domains, corresponding to the differences in the metabolite structures, highlighted in bold, are included (different domains indicated with arrows).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4525017&req=5

Figure 5: Moenomycin and bafilomycin biosynthetic genes clusters. (A) Rearrangement of the moenomycin- and bafilomycin-type clusters in some producers of moenomycin. PKS genes are shown in black, modules indicated by numbers. Bafilomycin biosynthetic genes outlined in black (PKS genes in filled black, tailoring genes filled gray), moenomycin in gray. Homologous regions identified in isolates Nos. BCCO10_398 and BCCO_628 are shown as black rectangles. (B) Domain organization within PKS genes – comparison of closely related clusters encoding biosynthesis of bafilomycin B1 and L-155,175. Specificity of AT domains, corresponding to the differences in the metabolite structures, highlighted in bold, are included (different domains indicated with arrows).

Mentions: Most of the putative moenomycin-type isolates formed a separate branch (subgroup I), with only one strain clustered tightly with the type producer strains. Therefore, two strains S. aurantiacus BCCO10_398 and S. ederensis BCCO10_628 were more closely characterized genetically. Short genomic fragments of their hemA loci were cloned and sequenced. Both showed similar gene organization as moe cluster 1 of the moenomycin producer S. ghanaensis (Ostash et al., 2007), with a short non-homologous region in BCCO10_628 (homologous parts indicated as black rectangles in Figure 5A). We suppose that at least majority of the subgroup I strains produces moenomycin-type compounds.


Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques.

Petříčková K, Chroňáková A, Zelenka T, Chrudimský T, Pospíšil S, Petříček M, Krištůfek V - Front Microbiol (2015)

Moenomycin and bafilomycin biosynthetic genes clusters. (A) Rearrangement of the moenomycin- and bafilomycin-type clusters in some producers of moenomycin. PKS genes are shown in black, modules indicated by numbers. Bafilomycin biosynthetic genes outlined in black (PKS genes in filled black, tailoring genes filled gray), moenomycin in gray. Homologous regions identified in isolates Nos. BCCO10_398 and BCCO_628 are shown as black rectangles. (B) Domain organization within PKS genes – comparison of closely related clusters encoding biosynthesis of bafilomycin B1 and L-155,175. Specificity of AT domains, corresponding to the differences in the metabolite structures, highlighted in bold, are included (different domains indicated with arrows).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4525017&req=5

Figure 5: Moenomycin and bafilomycin biosynthetic genes clusters. (A) Rearrangement of the moenomycin- and bafilomycin-type clusters in some producers of moenomycin. PKS genes are shown in black, modules indicated by numbers. Bafilomycin biosynthetic genes outlined in black (PKS genes in filled black, tailoring genes filled gray), moenomycin in gray. Homologous regions identified in isolates Nos. BCCO10_398 and BCCO_628 are shown as black rectangles. (B) Domain organization within PKS genes – comparison of closely related clusters encoding biosynthesis of bafilomycin B1 and L-155,175. Specificity of AT domains, corresponding to the differences in the metabolite structures, highlighted in bold, are included (different domains indicated with arrows).
Mentions: Most of the putative moenomycin-type isolates formed a separate branch (subgroup I), with only one strain clustered tightly with the type producer strains. Therefore, two strains S. aurantiacus BCCO10_398 and S. ederensis BCCO10_628 were more closely characterized genetically. Short genomic fragments of their hemA loci were cloned and sequenced. Both showed similar gene organization as moe cluster 1 of the moenomycin producer S. ghanaensis (Ostash et al., 2007), with a short non-homologous region in BCCO10_628 (homologous parts indicated as black rectangles in Figure 5A). We suppose that at least majority of the subgroup I strains produces moenomycin-type compounds.

Bottom Line: Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains.Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms.Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.

View Article: PubMed Central - PubMed

Affiliation: Institute of Microbiology, Czech Academy of Sciences, v. v. i. Prague, Czech Republic.

ABSTRACT
A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike "classical" primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of "classical" ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.

No MeSH data available.


Related in: MedlinePlus