Limits...
Maternal exercise before and during pregnancy does not impact offspring exercise or body composition in mice.

Kelly SA, Hua K, Wallace JN, Wells SE, Nehrenberg DL, Pomp D - J Negat Results Biomed (2015)

Bottom Line: One such environmental influence is the maternal milieu (i.e., in utero environment or maternal care).Variability in the maternal environment may directly impact the mother, and simultaneously has the potential to influence the physiology and/or behavior of offspring in utero, post birth, and into adulthood.The current results conflict with previous findings in human and mouse models demonstrating that maternal exercise has the potential to alter offspring phenotypes.

View Article: PubMed Central - PubMed

Affiliation: Department of Zoology, Ohio Wesleyan University, Schimmel/Conrades Science Center #346, 61 S. Sandusky St, Delaware, OH, 43015, USA. sakelly@owu.edu.

ABSTRACT

Background: The genome, the environment, and their interactions simultaneously regulate complex traits such as body composition and voluntary exercise levels. One such environmental influence is the maternal milieu (i.e., in utero environment or maternal care). Variability in the maternal environment may directly impact the mother, and simultaneously has the potential to influence the physiology and/or behavior of offspring in utero, post birth, and into adulthood. Here, we utilized a murine model to examine the effects of the maternal environment in regard to voluntary exercise (absence of wheel running, wheel running prior to gestation, and wheel running prior to and throughout gestation) on offspring weight and body composition (% fat tissue and % lean tissue) throughout development (~3 to ~9 weeks of age). Additionally, we examined the effects of ~6 weeks of maternal exercise (prior to and during gestation) on offspring exercise levels at ~9 weeks of age.

Results: We observed no substantial effects of maternal exercise on subsequent male or female offspring body composition throughout development, or on the propensity of offspring to engage in voluntary wheel running. At the level of the individual, correlational analyses revealed some statistically significant relationships between maternal and offspring exercise levels, likely reflecting previously known heritability estimates for such traits.

Conclusions: The current results conflict with previous findings in human and mouse models demonstrating that maternal exercise has the potential to alter offspring phenotypes. We discuss our negative findings in the context of the timing of the maternal exercise and the level of biological organization of the examined phenotypes within the offspring.

Show MeSH

Related in: MedlinePlus

Female offspring (G2) body mass (a), percent fat mass (b), and percent lean mass (c) at 3 weeks of age. Individuals were exposed to the following maternal experimental conditions: no maternal exercise (standard mouse cage), post-weaning maternal exercise (access to a running wheel up until the time of mating), and post-weaning and gestational maternal exercise (access to a running wheel until two days prior to giving birth). General Linear Models [Univariate GLM ANOVA (SPSS, Chicago, IL)] revealed marginal effects of maternal exercise condition on body mass (F2, 42 = 3.089, p = 0.056) and percent lean mass (F2, 42 = 3.356, p = 0.044), but not on percent fat mass (F2, 42 = 2.289, p = 0.114). Means ± standard errors of untransformed data are presented for each trait
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4522962&req=5

Fig3: Female offspring (G2) body mass (a), percent fat mass (b), and percent lean mass (c) at 3 weeks of age. Individuals were exposed to the following maternal experimental conditions: no maternal exercise (standard mouse cage), post-weaning maternal exercise (access to a running wheel up until the time of mating), and post-weaning and gestational maternal exercise (access to a running wheel until two days prior to giving birth). General Linear Models [Univariate GLM ANOVA (SPSS, Chicago, IL)] revealed marginal effects of maternal exercise condition on body mass (F2, 42 = 3.089, p = 0.056) and percent lean mass (F2, 42 = 3.356, p = 0.044), but not on percent fat mass (F2, 42 = 2.289, p = 0.114). Means ± standard errors of untransformed data are presented for each trait

Mentions: Results of separate-sex analyses of offspring (G2) body composition traits at different ages and in response to 6 days of voluntary wheel running are presented in Additional file 1: Table S4. Age, days since birth at the time of phenotypic measurement was included as a covariate where appropriate. Analyses revealed only one statistically significant effect of maternal exercise condition group on percent lean mass at 3 weeks of age for female offspring (p = 0.044) (Fig. 3). Estimated marginal means and standard errors corresponding to analyses of body composition traits are presented in Additional file 1: Table S5.Fig. 3


Maternal exercise before and during pregnancy does not impact offspring exercise or body composition in mice.

Kelly SA, Hua K, Wallace JN, Wells SE, Nehrenberg DL, Pomp D - J Negat Results Biomed (2015)

Female offspring (G2) body mass (a), percent fat mass (b), and percent lean mass (c) at 3 weeks of age. Individuals were exposed to the following maternal experimental conditions: no maternal exercise (standard mouse cage), post-weaning maternal exercise (access to a running wheel up until the time of mating), and post-weaning and gestational maternal exercise (access to a running wheel until two days prior to giving birth). General Linear Models [Univariate GLM ANOVA (SPSS, Chicago, IL)] revealed marginal effects of maternal exercise condition on body mass (F2, 42 = 3.089, p = 0.056) and percent lean mass (F2, 42 = 3.356, p = 0.044), but not on percent fat mass (F2, 42 = 2.289, p = 0.114). Means ± standard errors of untransformed data are presented for each trait
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4522962&req=5

Fig3: Female offspring (G2) body mass (a), percent fat mass (b), and percent lean mass (c) at 3 weeks of age. Individuals were exposed to the following maternal experimental conditions: no maternal exercise (standard mouse cage), post-weaning maternal exercise (access to a running wheel up until the time of mating), and post-weaning and gestational maternal exercise (access to a running wheel until two days prior to giving birth). General Linear Models [Univariate GLM ANOVA (SPSS, Chicago, IL)] revealed marginal effects of maternal exercise condition on body mass (F2, 42 = 3.089, p = 0.056) and percent lean mass (F2, 42 = 3.356, p = 0.044), but not on percent fat mass (F2, 42 = 2.289, p = 0.114). Means ± standard errors of untransformed data are presented for each trait
Mentions: Results of separate-sex analyses of offspring (G2) body composition traits at different ages and in response to 6 days of voluntary wheel running are presented in Additional file 1: Table S4. Age, days since birth at the time of phenotypic measurement was included as a covariate where appropriate. Analyses revealed only one statistically significant effect of maternal exercise condition group on percent lean mass at 3 weeks of age for female offspring (p = 0.044) (Fig. 3). Estimated marginal means and standard errors corresponding to analyses of body composition traits are presented in Additional file 1: Table S5.Fig. 3

Bottom Line: One such environmental influence is the maternal milieu (i.e., in utero environment or maternal care).Variability in the maternal environment may directly impact the mother, and simultaneously has the potential to influence the physiology and/or behavior of offspring in utero, post birth, and into adulthood.The current results conflict with previous findings in human and mouse models demonstrating that maternal exercise has the potential to alter offspring phenotypes.

View Article: PubMed Central - PubMed

Affiliation: Department of Zoology, Ohio Wesleyan University, Schimmel/Conrades Science Center #346, 61 S. Sandusky St, Delaware, OH, 43015, USA. sakelly@owu.edu.

ABSTRACT

Background: The genome, the environment, and their interactions simultaneously regulate complex traits such as body composition and voluntary exercise levels. One such environmental influence is the maternal milieu (i.e., in utero environment or maternal care). Variability in the maternal environment may directly impact the mother, and simultaneously has the potential to influence the physiology and/or behavior of offspring in utero, post birth, and into adulthood. Here, we utilized a murine model to examine the effects of the maternal environment in regard to voluntary exercise (absence of wheel running, wheel running prior to gestation, and wheel running prior to and throughout gestation) on offspring weight and body composition (% fat tissue and % lean tissue) throughout development (~3 to ~9 weeks of age). Additionally, we examined the effects of ~6 weeks of maternal exercise (prior to and during gestation) on offspring exercise levels at ~9 weeks of age.

Results: We observed no substantial effects of maternal exercise on subsequent male or female offspring body composition throughout development, or on the propensity of offspring to engage in voluntary wheel running. At the level of the individual, correlational analyses revealed some statistically significant relationships between maternal and offspring exercise levels, likely reflecting previously known heritability estimates for such traits.

Conclusions: The current results conflict with previous findings in human and mouse models demonstrating that maternal exercise has the potential to alter offspring phenotypes. We discuss our negative findings in the context of the timing of the maternal exercise and the level of biological organization of the examined phenotypes within the offspring.

Show MeSH
Related in: MedlinePlus