Limits...
Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography.

Leone L, Pezzella A, Crescenzi O, Napolitano A, Barone V, d'Ischia M - ChemistryOpen (2015)

Bottom Line: These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations.This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system.With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical Sciences, University of Naples Federico II Via Cintia 4, 80126, Naples, Italy.

ABSTRACT
Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

No MeSH data available.


Related in: MedlinePlus

Energies (PBE0/6-311++G(2d,2p)//PBE0/6-31+G(d,p)) of selected orbitals of TC(N/0/Ph) (top) and TC(N/1/Ph) (bottom) in different protonation states. Black line: neutral form; red line: monoprotonated (iminium) form; green line: diprotonated form.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4522187&req=5

fig05: Energies (PBE0/6-311++G(2d,2p)//PBE0/6-31+G(d,p)) of selected orbitals of TC(N/0/Ph) (top) and TC(N/1/Ph) (bottom) in different protonation states. Black line: neutral form; red line: monoprotonated (iminium) form; green line: diprotonated form.

Mentions: Analysis of the computed electronic spectra of TC(N/0/Ph) and TC(N/1/Ph) confirmed that in all three relevant protonation states, the highest wavelength transition is HOMO–LUMO in character. Upon protonation of the benzothiazine nitrogen, the energy of the HOMO is lowered, and even more so that of the LUMO, thus justifying the observed bathochromic shift (Figure 5).


Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography.

Leone L, Pezzella A, Crescenzi O, Napolitano A, Barone V, d'Ischia M - ChemistryOpen (2015)

Energies (PBE0/6-311++G(2d,2p)//PBE0/6-31+G(d,p)) of selected orbitals of TC(N/0/Ph) (top) and TC(N/1/Ph) (bottom) in different protonation states. Black line: neutral form; red line: monoprotonated (iminium) form; green line: diprotonated form.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4522187&req=5

fig05: Energies (PBE0/6-311++G(2d,2p)//PBE0/6-31+G(d,p)) of selected orbitals of TC(N/0/Ph) (top) and TC(N/1/Ph) (bottom) in different protonation states. Black line: neutral form; red line: monoprotonated (iminium) form; green line: diprotonated form.
Mentions: Analysis of the computed electronic spectra of TC(N/0/Ph) and TC(N/1/Ph) confirmed that in all three relevant protonation states, the highest wavelength transition is HOMO–LUMO in character. Upon protonation of the benzothiazine nitrogen, the energy of the HOMO is lowered, and even more so that of the LUMO, thus justifying the observed bathochromic shift (Figure 5).

Bottom Line: These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations.This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system.With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical Sciences, University of Naples Federico II Via Cintia 4, 80126, Naples, Italy.

ABSTRACT
Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

No MeSH data available.


Related in: MedlinePlus