Limits...
Having older siblings is associated with gut microbiota development during early childhood.

Laursen MF, Zachariassen G, Bahl MI, Bergström A, Høst A, Michaelsen KF, Licht TR - BMC Microbiol. (2015)

Bottom Line: Gut microbiota characteristics were not significantly associated with cumulative occurrence of eczema and asthmatic bronchitis during the first 3 years of life.Presence of older siblings is associated with increased gut microbial diversity and richness during early childhood, which could contribute to the substantiation of the hygiene hypothesis.However, no associations were found between gut microbiota and atopic symptoms of eczema and asthmatic bronchitis during early childhood and thus further studies are required to elucidate whether sibling-associated gut microbial changes influence development of allergies later in childhood.

View Article: PubMed Central - PubMed

Affiliation: Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860, Søborg, Denmark. mfrla@food.dtu.dk.

ABSTRACT

Background: Evidence suggests that early life infections, presence of older siblings and furred pets in the household affect the risk of developing allergic diseases through altered microbial exposure. Recently, low gut microbial diversity during infancy has also been linked with later development of allergies. We investigated whether presence of older siblings, furred pets and early life infections affected gut microbial communities at 9 and 18 months of age and whether these differences were associated with the cumulative prevalence of atopic symptoms of eczema and asthmatic bronchitis at 3 years of age. Bacterial compositions and diversity indices were determined in fecal samples collected from 114 infants in the SKOT I cohort at age 9 and 18 months by 16S rRNA gene sequencing. These were compared to the presence of older siblings, furred pets and early life infections and the cumulative prevalence of diagnosed asthmatic bronchitis and self-reported eczema at 3 years of age.

Results: The number of older siblings correlated positively with bacterial diversity (p = 0.030), diversity of the phyla Firmicutes (p = 0.013) and Bacteroidetes (p = 0.004) and bacterial richness (p = 0.006) at 18 months. Further, having older siblings was associated with increased relative abundance of several bacterial taxa at both 9 and 18 months of age. Compared to the effect of having siblings, presence of household furred pets and early life infections had less pronounced effects on the gut microbiota. Gut microbiota characteristics were not significantly associated with cumulative occurrence of eczema and asthmatic bronchitis during the first 3 years of life.

Conclusions: Presence of older siblings is associated with increased gut microbial diversity and richness during early childhood, which could contribute to the substantiation of the hygiene hypothesis. However, no associations were found between gut microbiota and atopic symptoms of eczema and asthmatic bronchitis during early childhood and thus further studies are required to elucidate whether sibling-associated gut microbial changes influence development of allergies later in childhood.

No MeSH data available.


Related in: MedlinePlus

Principle Component Analysis plots of relative abundance of gut bacterial families at 9 (a) and 18 months of age (b). Green triangles indicate no eczema or asthmatic bronchitis, orange squares indicate presence of eczema, blue triangles indicate presence of asthmatic bronchitis and red circles indicate presence of both asthmatic bronchitis and eczema
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4522135&req=5

Fig4: Principle Component Analysis plots of relative abundance of gut bacterial families at 9 (a) and 18 months of age (b). Green triangles indicate no eczema or asthmatic bronchitis, orange squares indicate presence of eczema, blue triangles indicate presence of asthmatic bronchitis and red circles indicate presence of both asthmatic bronchitis and eczema

Mentions: Principal component analysis of the gut microbiota composition at family level at ages 9 and 18 months did not reveal any separation of samples originating from children with symptoms of eczema, asthmatic bronchitis or both, compared to samples originating from children without these symptoms (Fig. 4). In accordance with this, Spearman correlation analysis of relative abundances of bacterial genera at 9 and 18 months of age against the occurrence of asthmatic bronchitis and eczema during the first 3 years of life revealed no significant correlations with these outcomes after correction for multiple testing (Additional file 4: Figure S2). Neither asthmatic bronchitis nor eczema was found to be associated with diversity or richness of the faecal microbial populations (Additional file 5: Figure S3).Fig. 4


Having older siblings is associated with gut microbiota development during early childhood.

Laursen MF, Zachariassen G, Bahl MI, Bergström A, Høst A, Michaelsen KF, Licht TR - BMC Microbiol. (2015)

Principle Component Analysis plots of relative abundance of gut bacterial families at 9 (a) and 18 months of age (b). Green triangles indicate no eczema or asthmatic bronchitis, orange squares indicate presence of eczema, blue triangles indicate presence of asthmatic bronchitis and red circles indicate presence of both asthmatic bronchitis and eczema
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4522135&req=5

Fig4: Principle Component Analysis plots of relative abundance of gut bacterial families at 9 (a) and 18 months of age (b). Green triangles indicate no eczema or asthmatic bronchitis, orange squares indicate presence of eczema, blue triangles indicate presence of asthmatic bronchitis and red circles indicate presence of both asthmatic bronchitis and eczema
Mentions: Principal component analysis of the gut microbiota composition at family level at ages 9 and 18 months did not reveal any separation of samples originating from children with symptoms of eczema, asthmatic bronchitis or both, compared to samples originating from children without these symptoms (Fig. 4). In accordance with this, Spearman correlation analysis of relative abundances of bacterial genera at 9 and 18 months of age against the occurrence of asthmatic bronchitis and eczema during the first 3 years of life revealed no significant correlations with these outcomes after correction for multiple testing (Additional file 4: Figure S2). Neither asthmatic bronchitis nor eczema was found to be associated with diversity or richness of the faecal microbial populations (Additional file 5: Figure S3).Fig. 4

Bottom Line: Gut microbiota characteristics were not significantly associated with cumulative occurrence of eczema and asthmatic bronchitis during the first 3 years of life.Presence of older siblings is associated with increased gut microbial diversity and richness during early childhood, which could contribute to the substantiation of the hygiene hypothesis.However, no associations were found between gut microbiota and atopic symptoms of eczema and asthmatic bronchitis during early childhood and thus further studies are required to elucidate whether sibling-associated gut microbial changes influence development of allergies later in childhood.

View Article: PubMed Central - PubMed

Affiliation: Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860, Søborg, Denmark. mfrla@food.dtu.dk.

ABSTRACT

Background: Evidence suggests that early life infections, presence of older siblings and furred pets in the household affect the risk of developing allergic diseases through altered microbial exposure. Recently, low gut microbial diversity during infancy has also been linked with later development of allergies. We investigated whether presence of older siblings, furred pets and early life infections affected gut microbial communities at 9 and 18 months of age and whether these differences were associated with the cumulative prevalence of atopic symptoms of eczema and asthmatic bronchitis at 3 years of age. Bacterial compositions and diversity indices were determined in fecal samples collected from 114 infants in the SKOT I cohort at age 9 and 18 months by 16S rRNA gene sequencing. These were compared to the presence of older siblings, furred pets and early life infections and the cumulative prevalence of diagnosed asthmatic bronchitis and self-reported eczema at 3 years of age.

Results: The number of older siblings correlated positively with bacterial diversity (p = 0.030), diversity of the phyla Firmicutes (p = 0.013) and Bacteroidetes (p = 0.004) and bacterial richness (p = 0.006) at 18 months. Further, having older siblings was associated with increased relative abundance of several bacterial taxa at both 9 and 18 months of age. Compared to the effect of having siblings, presence of household furred pets and early life infections had less pronounced effects on the gut microbiota. Gut microbiota characteristics were not significantly associated with cumulative occurrence of eczema and asthmatic bronchitis during the first 3 years of life.

Conclusions: Presence of older siblings is associated with increased gut microbial diversity and richness during early childhood, which could contribute to the substantiation of the hygiene hypothesis. However, no associations were found between gut microbiota and atopic symptoms of eczema and asthmatic bronchitis during early childhood and thus further studies are required to elucidate whether sibling-associated gut microbial changes influence development of allergies later in childhood.

No MeSH data available.


Related in: MedlinePlus