Limits...
Protection of Gastrointestinal Mucosa from Acute Heavy Alcohol Consumption: The Effect of Berberine and Its Correlation with TLR2, 4/IL1β-TNFα Signaling.

Wang XP, Lei F, Du F, Chai YS, Jiang JF, Wang YG, Yu X, Yan XJ, Xing DM, Du LJ - PLoS ONE (2015)

Bottom Line: The purpose of the present study is to confirm the protective effect of berberine (BBR) on gastrointestinal injury caused by acute heavy alcohol exposure, an effect that has not been reported previously.Acute high alcohol concentrations lead to obvious damage to the gastrointestinal mucosa, resulting in necrosis of the intestinal mucosa.Oral administration of BBR was able to significantly reduce this alcohol-induced damage, inhibit increases of alcohol-induced TNFα and IL-1β expression in gastrointestinal mucosa as well as their upstream signals TLR2 and TLR4, and regulate cytokines that modulate tight junctions.

View Article: PubMed Central - PubMed

Affiliation: MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

ABSTRACT
The purpose of the present study is to confirm the protective effect of berberine (BBR) on gastrointestinal injury caused by acute heavy alcohol exposure, an effect that has not been reported previously. Our research details how BBR protects against gastrointestinal injuries from acute alcohol exposure using both in vivo and in vitro experiments. Acute high alcohol concentrations lead to obvious damage to the gastrointestinal mucosa, resulting in necrosis of the intestinal mucosa. Oral administration of BBR was able to significantly reduce this alcohol-induced damage, inhibit increases of alcohol-induced TNFα and IL-1β expression in gastrointestinal mucosa as well as their upstream signals TLR2 and TLR4, and regulate cytokines that modulate tight junctions. Alcohol consumption is a popular human social behavior worldwide, and the present study reports a comprehensive mechanism by which BBR protects against gastrointestinal injuries from alcohol stress, providing people with a novel application of BBR.

No MeSH data available.


Related in: MedlinePlus

The concentration of alcohol and activity of ADH enzyme in blood of mice.(A): Alcohol, Kruskal-Wallis chi-squared = 26.6366, df = 4, P = 2.354e-05. (B): ADH. Kruskal-Wallis chi-squared = 14.0461, df = 4, P = 0.007149. Data are expressed as the mean ± S.D. from six different mice. #, ## vs. normal mice, P < 0.05, P < 0.01. *, ** vs. model mice, P < 0.05, P < 0.01.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4520689&req=5

pone.0134044.g002: The concentration of alcohol and activity of ADH enzyme in blood of mice.(A): Alcohol, Kruskal-Wallis chi-squared = 26.6366, df = 4, P = 2.354e-05. (B): ADH. Kruskal-Wallis chi-squared = 14.0461, df = 4, P = 0.007149. Data are expressed as the mean ± S.D. from six different mice. #, ## vs. normal mice, P < 0.05, P < 0.01. *, ** vs. model mice, P < 0.05, P < 0.01.

Mentions: The blood alcohol concentration (BAC) after alcohol consumption is the major factor causing drunkenness and body damage. Pretreatment with BBR before alcohol administration significantly reduced the BAC in mice even at the lower doses (Fig 2A). Furthermore, the plasma ADH activity was remarkably increased in the group treated with high-dose BBR, suggesting that in addition to the protective duodenum effect, BBR could protect mice from alcohol injury through decreased blood alcohol concentration and enhanced metabolism of alcohol by increased ADH activity (Fig 2B).


Protection of Gastrointestinal Mucosa from Acute Heavy Alcohol Consumption: The Effect of Berberine and Its Correlation with TLR2, 4/IL1β-TNFα Signaling.

Wang XP, Lei F, Du F, Chai YS, Jiang JF, Wang YG, Yu X, Yan XJ, Xing DM, Du LJ - PLoS ONE (2015)

The concentration of alcohol and activity of ADH enzyme in blood of mice.(A): Alcohol, Kruskal-Wallis chi-squared = 26.6366, df = 4, P = 2.354e-05. (B): ADH. Kruskal-Wallis chi-squared = 14.0461, df = 4, P = 0.007149. Data are expressed as the mean ± S.D. from six different mice. #, ## vs. normal mice, P < 0.05, P < 0.01. *, ** vs. model mice, P < 0.05, P < 0.01.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4520689&req=5

pone.0134044.g002: The concentration of alcohol and activity of ADH enzyme in blood of mice.(A): Alcohol, Kruskal-Wallis chi-squared = 26.6366, df = 4, P = 2.354e-05. (B): ADH. Kruskal-Wallis chi-squared = 14.0461, df = 4, P = 0.007149. Data are expressed as the mean ± S.D. from six different mice. #, ## vs. normal mice, P < 0.05, P < 0.01. *, ** vs. model mice, P < 0.05, P < 0.01.
Mentions: The blood alcohol concentration (BAC) after alcohol consumption is the major factor causing drunkenness and body damage. Pretreatment with BBR before alcohol administration significantly reduced the BAC in mice even at the lower doses (Fig 2A). Furthermore, the plasma ADH activity was remarkably increased in the group treated with high-dose BBR, suggesting that in addition to the protective duodenum effect, BBR could protect mice from alcohol injury through decreased blood alcohol concentration and enhanced metabolism of alcohol by increased ADH activity (Fig 2B).

Bottom Line: The purpose of the present study is to confirm the protective effect of berberine (BBR) on gastrointestinal injury caused by acute heavy alcohol exposure, an effect that has not been reported previously.Acute high alcohol concentrations lead to obvious damage to the gastrointestinal mucosa, resulting in necrosis of the intestinal mucosa.Oral administration of BBR was able to significantly reduce this alcohol-induced damage, inhibit increases of alcohol-induced TNFα and IL-1β expression in gastrointestinal mucosa as well as their upstream signals TLR2 and TLR4, and regulate cytokines that modulate tight junctions.

View Article: PubMed Central - PubMed

Affiliation: MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

ABSTRACT
The purpose of the present study is to confirm the protective effect of berberine (BBR) on gastrointestinal injury caused by acute heavy alcohol exposure, an effect that has not been reported previously. Our research details how BBR protects against gastrointestinal injuries from acute alcohol exposure using both in vivo and in vitro experiments. Acute high alcohol concentrations lead to obvious damage to the gastrointestinal mucosa, resulting in necrosis of the intestinal mucosa. Oral administration of BBR was able to significantly reduce this alcohol-induced damage, inhibit increases of alcohol-induced TNFα and IL-1β expression in gastrointestinal mucosa as well as their upstream signals TLR2 and TLR4, and regulate cytokines that modulate tight junctions. Alcohol consumption is a popular human social behavior worldwide, and the present study reports a comprehensive mechanism by which BBR protects against gastrointestinal injuries from alcohol stress, providing people with a novel application of BBR.

No MeSH data available.


Related in: MedlinePlus