Limits...
Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

Genç B, Lagrimas AK, Kuru P, Hess R, Tu MW, Menichella DM, Miller RJ, Paller AS, Özdinler PH - PLoS ONE (2015)

Bottom Line: Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation.Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage.Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

View Article: PubMed Central - PubMed

Affiliation: Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America.

ABSTRACT
Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

No MeSH data available.


Related in: MedlinePlus

eGFP labels projections of sensory neurons in the periphery.(A-D) eGFP+ dorsal root ganglia (DRG) axons can be seen extending into the developing limb bud (A), in the depilated leg of the whole adult mouse (B), in the hairy back skin of the whole adult mouse both in section (C) and wholemount (D). Insert enlarged to the right. (E-G) UCHL1-eGFP reporter mouse can be used to study innervation of hair follicles in whisker pads of P0 (E-F) or adult mice (G). Insert enlarged to the right. (H) Proprioceptive nerve endings in muscle spindles are eGFP+. (I-K) eGFP+ axons can be used to study innervation of the P0 foot (I), or adult footpad epidermis and sweat glands (J, K). Insert enlarged to the right. Scale bars A, D 1 mm; A inset, B, C, E, F, G, I 500 μm; C inset, E inset, F inset, I inset 100 μm; D inset, J, K 200 μm; H 50 μm; J inset, K inset 25 μm.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4519325&req=5

pone.0132815.g004: eGFP labels projections of sensory neurons in the periphery.(A-D) eGFP+ dorsal root ganglia (DRG) axons can be seen extending into the developing limb bud (A), in the depilated leg of the whole adult mouse (B), in the hairy back skin of the whole adult mouse both in section (C) and wholemount (D). Insert enlarged to the right. (E-G) UCHL1-eGFP reporter mouse can be used to study innervation of hair follicles in whisker pads of P0 (E-F) or adult mice (G). Insert enlarged to the right. (H) Proprioceptive nerve endings in muscle spindles are eGFP+. (I-K) eGFP+ axons can be used to study innervation of the P0 foot (I), or adult footpad epidermis and sweat glands (J, K). Insert enlarged to the right. Scale bars A, D 1 mm; A inset, B, C, E, F, G, I 500 μm; C inset, E inset, F inset, I inset 100 μm; D inset, J, K 200 μm; H 50 μm; J inset, K inset 25 μm.

Mentions: Peripheral axons extending towards their targets in the developing limbs are eGFP+ during embryonic development (Fig 4A). When a depilated whole adult mouse is observed under a fluorescent dissecting microscope, deep nerve bundles in the leg (Fig 4B) and hairy back skin (Fig 4C) can be seen branching and extending towards their peripheral targets even at low magnification. Even though details of fine nerve endings on skin surface become apparent at high magnification (Fig 4C inset), wholemount immunocytochemistry using anti-GFP antibody (α-GFP) reveals very precise details of axon bundles entering the skin and splitting into finer branches (Fig 4D).


Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

Genç B, Lagrimas AK, Kuru P, Hess R, Tu MW, Menichella DM, Miller RJ, Paller AS, Özdinler PH - PLoS ONE (2015)

eGFP labels projections of sensory neurons in the periphery.(A-D) eGFP+ dorsal root ganglia (DRG) axons can be seen extending into the developing limb bud (A), in the depilated leg of the whole adult mouse (B), in the hairy back skin of the whole adult mouse both in section (C) and wholemount (D). Insert enlarged to the right. (E-G) UCHL1-eGFP reporter mouse can be used to study innervation of hair follicles in whisker pads of P0 (E-F) or adult mice (G). Insert enlarged to the right. (H) Proprioceptive nerve endings in muscle spindles are eGFP+. (I-K) eGFP+ axons can be used to study innervation of the P0 foot (I), or adult footpad epidermis and sweat glands (J, K). Insert enlarged to the right. Scale bars A, D 1 mm; A inset, B, C, E, F, G, I 500 μm; C inset, E inset, F inset, I inset 100 μm; D inset, J, K 200 μm; H 50 μm; J inset, K inset 25 μm.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4519325&req=5

pone.0132815.g004: eGFP labels projections of sensory neurons in the periphery.(A-D) eGFP+ dorsal root ganglia (DRG) axons can be seen extending into the developing limb bud (A), in the depilated leg of the whole adult mouse (B), in the hairy back skin of the whole adult mouse both in section (C) and wholemount (D). Insert enlarged to the right. (E-G) UCHL1-eGFP reporter mouse can be used to study innervation of hair follicles in whisker pads of P0 (E-F) or adult mice (G). Insert enlarged to the right. (H) Proprioceptive nerve endings in muscle spindles are eGFP+. (I-K) eGFP+ axons can be used to study innervation of the P0 foot (I), or adult footpad epidermis and sweat glands (J, K). Insert enlarged to the right. Scale bars A, D 1 mm; A inset, B, C, E, F, G, I 500 μm; C inset, E inset, F inset, I inset 100 μm; D inset, J, K 200 μm; H 50 μm; J inset, K inset 25 μm.
Mentions: Peripheral axons extending towards their targets in the developing limbs are eGFP+ during embryonic development (Fig 4A). When a depilated whole adult mouse is observed under a fluorescent dissecting microscope, deep nerve bundles in the leg (Fig 4B) and hairy back skin (Fig 4C) can be seen branching and extending towards their peripheral targets even at low magnification. Even though details of fine nerve endings on skin surface become apparent at high magnification (Fig 4C inset), wholemount immunocytochemistry using anti-GFP antibody (α-GFP) reveals very precise details of axon bundles entering the skin and splitting into finer branches (Fig 4D).

Bottom Line: Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation.Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage.Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

View Article: PubMed Central - PubMed

Affiliation: Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America.

ABSTRACT
Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

No MeSH data available.


Related in: MedlinePlus