Limits...
Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

Genç B, Lagrimas AK, Kuru P, Hess R, Tu MW, Menichella DM, Miller RJ, Paller AS, Özdinler PH - PLoS ONE (2015)

Bottom Line: Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation.Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage.Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

View Article: PubMed Central - PubMed

Affiliation: Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America.

ABSTRACT
Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

No MeSH data available.


Related in: MedlinePlus

UCHL1-eGFP reporter line allows visualization of peripheral nervous system in vivo.(A) Enhanced green fluorescent protein (eGFP) expression is evident at embryonic day (E) 12 in UCHL1-eGFP mice. (B-D) Cross-section through the E12 embryo showing eGFP+ trigeminal ganglia (TG; C) and dorsal root ganglia (DRG; D) neurons. (E) Cross-section of the postnatal day (P) 0 trunk reveals eGFP+ DRG neurons, their axons, sympathetic chain ganglia (SCG), and spinal motor neurons (SMN) in the ventral horn of the spinal cord. (F) eGFP expression in the adult DRG. Insert enlarged to the right. (G) Cross section of DRG section reveals eGFP+ neurons. (H) Sagittal-section of the P0 head showing eGFP+ TG neurons and their axons projecting to the whisker pad and brainstem. (I) Cross section of adult TG. (J) eGFP+ SCG in the exposed adult thoracic cavity. Insert enlarged to the right. (K) Open-book prep of wholemount intestines displays a network of eGFP+ enteric nervous system (ENS) neurons and their axons. Insert enlarged to the right. (L-M) Cross-sections of intestines show ENS neurons in both the myenteric plexus (MP; L) and submucosal plexus (SP; marked with eGFP expression; M). (N-O) eGFP is expressed in the testis. (P) eGFP is not expressed in the retina. WP: whisker pad, ONL: outer nuclear layer, INL: inner nuclear layer, GCL: ganglion cell layer. Scale bars A, B, F inset and J inset 1 mm; C 500 μm; D, E, K, N 200 μm; F, H, J 2 mm; G, I, K inset, L, M, O 50 μm; O inset 10 μm; and P 100 μm.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4519325&req=5

pone.0132815.g001: UCHL1-eGFP reporter line allows visualization of peripheral nervous system in vivo.(A) Enhanced green fluorescent protein (eGFP) expression is evident at embryonic day (E) 12 in UCHL1-eGFP mice. (B-D) Cross-section through the E12 embryo showing eGFP+ trigeminal ganglia (TG; C) and dorsal root ganglia (DRG; D) neurons. (E) Cross-section of the postnatal day (P) 0 trunk reveals eGFP+ DRG neurons, their axons, sympathetic chain ganglia (SCG), and spinal motor neurons (SMN) in the ventral horn of the spinal cord. (F) eGFP expression in the adult DRG. Insert enlarged to the right. (G) Cross section of DRG section reveals eGFP+ neurons. (H) Sagittal-section of the P0 head showing eGFP+ TG neurons and their axons projecting to the whisker pad and brainstem. (I) Cross section of adult TG. (J) eGFP+ SCG in the exposed adult thoracic cavity. Insert enlarged to the right. (K) Open-book prep of wholemount intestines displays a network of eGFP+ enteric nervous system (ENS) neurons and their axons. Insert enlarged to the right. (L-M) Cross-sections of intestines show ENS neurons in both the myenteric plexus (MP; L) and submucosal plexus (SP; marked with eGFP expression; M). (N-O) eGFP is expressed in the testis. (P) eGFP is not expressed in the retina. WP: whisker pad, ONL: outer nuclear layer, INL: inner nuclear layer, GCL: ganglion cell layer. Scale bars A, B, F inset and J inset 1 mm; C 500 μm; D, E, K, N 200 μm; F, H, J 2 mm; G, I, K inset, L, M, O 50 μm; O inset 10 μm; and P 100 μm.

Mentions: To genetically label distinct populations of neurons and allow their immediate visualization in vivo, we recently generated UCHL1-eGFP reporter line, which expresses eGFP under the control of UCHL1 promoter. We previously showed that in the CNS, eGFP expression is restricted to CSMN in the motor cortex and degeneration-resistant SMN in the spinal cord [18]. However, since high levels of UCHL1 expression in the sensory nervous system is used as a marker to trace the sensory neurons in the periphery [8,9], we next investigated whether eGFP expression is present in the PNS in the UCHL1-eGFP mice (Fig 1).


Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

Genç B, Lagrimas AK, Kuru P, Hess R, Tu MW, Menichella DM, Miller RJ, Paller AS, Özdinler PH - PLoS ONE (2015)

UCHL1-eGFP reporter line allows visualization of peripheral nervous system in vivo.(A) Enhanced green fluorescent protein (eGFP) expression is evident at embryonic day (E) 12 in UCHL1-eGFP mice. (B-D) Cross-section through the E12 embryo showing eGFP+ trigeminal ganglia (TG; C) and dorsal root ganglia (DRG; D) neurons. (E) Cross-section of the postnatal day (P) 0 trunk reveals eGFP+ DRG neurons, their axons, sympathetic chain ganglia (SCG), and spinal motor neurons (SMN) in the ventral horn of the spinal cord. (F) eGFP expression in the adult DRG. Insert enlarged to the right. (G) Cross section of DRG section reveals eGFP+ neurons. (H) Sagittal-section of the P0 head showing eGFP+ TG neurons and their axons projecting to the whisker pad and brainstem. (I) Cross section of adult TG. (J) eGFP+ SCG in the exposed adult thoracic cavity. Insert enlarged to the right. (K) Open-book prep of wholemount intestines displays a network of eGFP+ enteric nervous system (ENS) neurons and their axons. Insert enlarged to the right. (L-M) Cross-sections of intestines show ENS neurons in both the myenteric plexus (MP; L) and submucosal plexus (SP; marked with eGFP expression; M). (N-O) eGFP is expressed in the testis. (P) eGFP is not expressed in the retina. WP: whisker pad, ONL: outer nuclear layer, INL: inner nuclear layer, GCL: ganglion cell layer. Scale bars A, B, F inset and J inset 1 mm; C 500 μm; D, E, K, N 200 μm; F, H, J 2 mm; G, I, K inset, L, M, O 50 μm; O inset 10 μm; and P 100 μm.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4519325&req=5

pone.0132815.g001: UCHL1-eGFP reporter line allows visualization of peripheral nervous system in vivo.(A) Enhanced green fluorescent protein (eGFP) expression is evident at embryonic day (E) 12 in UCHL1-eGFP mice. (B-D) Cross-section through the E12 embryo showing eGFP+ trigeminal ganglia (TG; C) and dorsal root ganglia (DRG; D) neurons. (E) Cross-section of the postnatal day (P) 0 trunk reveals eGFP+ DRG neurons, their axons, sympathetic chain ganglia (SCG), and spinal motor neurons (SMN) in the ventral horn of the spinal cord. (F) eGFP expression in the adult DRG. Insert enlarged to the right. (G) Cross section of DRG section reveals eGFP+ neurons. (H) Sagittal-section of the P0 head showing eGFP+ TG neurons and their axons projecting to the whisker pad and brainstem. (I) Cross section of adult TG. (J) eGFP+ SCG in the exposed adult thoracic cavity. Insert enlarged to the right. (K) Open-book prep of wholemount intestines displays a network of eGFP+ enteric nervous system (ENS) neurons and their axons. Insert enlarged to the right. (L-M) Cross-sections of intestines show ENS neurons in both the myenteric plexus (MP; L) and submucosal plexus (SP; marked with eGFP expression; M). (N-O) eGFP is expressed in the testis. (P) eGFP is not expressed in the retina. WP: whisker pad, ONL: outer nuclear layer, INL: inner nuclear layer, GCL: ganglion cell layer. Scale bars A, B, F inset and J inset 1 mm; C 500 μm; D, E, K, N 200 μm; F, H, J 2 mm; G, I, K inset, L, M, O 50 μm; O inset 10 μm; and P 100 μm.
Mentions: To genetically label distinct populations of neurons and allow their immediate visualization in vivo, we recently generated UCHL1-eGFP reporter line, which expresses eGFP under the control of UCHL1 promoter. We previously showed that in the CNS, eGFP expression is restricted to CSMN in the motor cortex and degeneration-resistant SMN in the spinal cord [18]. However, since high levels of UCHL1 expression in the sensory nervous system is used as a marker to trace the sensory neurons in the periphery [8,9], we next investigated whether eGFP expression is present in the PNS in the UCHL1-eGFP mice (Fig 1).

Bottom Line: Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation.Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage.Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

View Article: PubMed Central - PubMed

Affiliation: Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America.

ABSTRACT
Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

No MeSH data available.


Related in: MedlinePlus