Limits...
Gait Pattern Alterations during Walking, Texting and Walking and Texting during Cognitively Distractive Tasks while Negotiating Common Pedestrian Obstacles.

Licence S, Smith R, McGuigan MP, Earnest CP - PLoS ONE (2015)

Bottom Line: No significant differences were noted for barrier contacts (P = 0.28).Texting while walking and/or being cognitively distracted significantly affect gait characteristics concordant to mobile phone usage resulting in a more cautious gate pattern.Future research should also examine a similar study in older participants who may be at a greater risk of tripping with such walking deviations.

View Article: PubMed Central - PubMed

Affiliation: The University of Bath, Department for Health, Bath, Somerset, United Kingdom.

ABSTRACT

Objectives: Mobile phone texting is a common daily occurrence with a paucity of research examining corresponding gait characteristics. To date, most studies have participants walk in a straight line vs. overcoming barriers and obstacles that occur during regular walking. The aim of our study is to examine the effect of mobile phone texting during periods of cognitive distraction while walking and negotiating barriers synonymous with pedestrian traffic.

Methods: Thirty participants (18-50 y) completed three randomized, counter-balanced walking tasks over a course during: (1) normal walking (control), (2) texting and walking, and (3) texting and walking whilst being cognitively distraction via a standard mathematical test performed while negotiating the obstacle course. We analyzed gait characteristics during course negotiation using a 3-dimensional motion analysis system and a general linear model and Dunnet-Hsu post-hoc procedure the normal walking condition to assess gait characteristic differences. Primary outcomes included the overall time to complete the course time and barrier contact. Secondary outcomes included obstacle clearance height, step frequency, step time, double support phase and lateral deviation.

Results: Participants took significantly longer (mean ± SD) to complete the course while texting (24.96 ± 4.20 sec) and during cognitive distraction COG (24.09 ± 3.36 sec) vs. normal walking (19.32 ± 2.28 sec; all, P<0.001). No significant differences were noted for barrier contacts (P = 0.28). Step frequency, step time, double support phase and lateral deviation all increased in duration during the texting and cognitive distraction trial. Texting and being cognitively distracted also increased obstacle clearance versus the walking condition (all, P<0.02).

Conclusions: Texting while walking and/or being cognitively distracted significantly affect gait characteristics concordant to mobile phone usage resulting in a more cautious gate pattern. Future research should also examine a similar study in older participants who may be at a greater risk of tripping with such walking deviations.

No MeSH data available.


Related in: MedlinePlus

Schematic and dimensional representation of obstacle course obstacles.(A) Step Over Curb (Length = 0.105 m; width = 0.720 m; height 0.105 m), (B) Crossing Platform (Length = 2.030 m; width = 0.750 m; height = 0.092 m), (C) Step Obstacle: (Step 1; Length = 0.400 m; width = 0.400 m; height = 0.205 m, (D) Step 2; Length = 0.500 m; width = 0.500 m; height = 0.300 m), (E) Step 3; (Length = 0.585 m; width = 0.910 m; height = 0.110 m), (F) Model people (Length = 0.420 m; width = 0.530 m; height = 1.880 m).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4519241&req=5

pone.0133281.g001: Schematic and dimensional representation of obstacle course obstacles.(A) Step Over Curb (Length = 0.105 m; width = 0.720 m; height 0.105 m), (B) Crossing Platform (Length = 2.030 m; width = 0.750 m; height = 0.092 m), (C) Step Obstacle: (Step 1; Length = 0.400 m; width = 0.400 m; height = 0.205 m, (D) Step 2; Length = 0.500 m; width = 0.500 m; height = 0.300 m), (E) Step 3; (Length = 0.585 m; width = 0.910 m; height = 0.110 m), (F) Model people (Length = 0.420 m; width = 0.530 m; height = 1.880 m).

Mentions: The obstacle course was designed to mimic obstacles one would encounter in everyday life (Fig 1) and consisted of seven obstacles designed and based on fieldwork within the City Centre of Bath, UK: (1) An obstacle resembling a curb to step over, (2) A platform to step-on, step-off platform, (3) A set of uneven steps, (4–5) Two traffic bollards to step around and, (6–7) Two dummies of sufficient height representing model people for participants to step around.


Gait Pattern Alterations during Walking, Texting and Walking and Texting during Cognitively Distractive Tasks while Negotiating Common Pedestrian Obstacles.

Licence S, Smith R, McGuigan MP, Earnest CP - PLoS ONE (2015)

Schematic and dimensional representation of obstacle course obstacles.(A) Step Over Curb (Length = 0.105 m; width = 0.720 m; height 0.105 m), (B) Crossing Platform (Length = 2.030 m; width = 0.750 m; height = 0.092 m), (C) Step Obstacle: (Step 1; Length = 0.400 m; width = 0.400 m; height = 0.205 m, (D) Step 2; Length = 0.500 m; width = 0.500 m; height = 0.300 m), (E) Step 3; (Length = 0.585 m; width = 0.910 m; height = 0.110 m), (F) Model people (Length = 0.420 m; width = 0.530 m; height = 1.880 m).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4519241&req=5

pone.0133281.g001: Schematic and dimensional representation of obstacle course obstacles.(A) Step Over Curb (Length = 0.105 m; width = 0.720 m; height 0.105 m), (B) Crossing Platform (Length = 2.030 m; width = 0.750 m; height = 0.092 m), (C) Step Obstacle: (Step 1; Length = 0.400 m; width = 0.400 m; height = 0.205 m, (D) Step 2; Length = 0.500 m; width = 0.500 m; height = 0.300 m), (E) Step 3; (Length = 0.585 m; width = 0.910 m; height = 0.110 m), (F) Model people (Length = 0.420 m; width = 0.530 m; height = 1.880 m).
Mentions: The obstacle course was designed to mimic obstacles one would encounter in everyday life (Fig 1) and consisted of seven obstacles designed and based on fieldwork within the City Centre of Bath, UK: (1) An obstacle resembling a curb to step over, (2) A platform to step-on, step-off platform, (3) A set of uneven steps, (4–5) Two traffic bollards to step around and, (6–7) Two dummies of sufficient height representing model people for participants to step around.

Bottom Line: No significant differences were noted for barrier contacts (P = 0.28).Texting while walking and/or being cognitively distracted significantly affect gait characteristics concordant to mobile phone usage resulting in a more cautious gate pattern.Future research should also examine a similar study in older participants who may be at a greater risk of tripping with such walking deviations.

View Article: PubMed Central - PubMed

Affiliation: The University of Bath, Department for Health, Bath, Somerset, United Kingdom.

ABSTRACT

Objectives: Mobile phone texting is a common daily occurrence with a paucity of research examining corresponding gait characteristics. To date, most studies have participants walk in a straight line vs. overcoming barriers and obstacles that occur during regular walking. The aim of our study is to examine the effect of mobile phone texting during periods of cognitive distraction while walking and negotiating barriers synonymous with pedestrian traffic.

Methods: Thirty participants (18-50 y) completed three randomized, counter-balanced walking tasks over a course during: (1) normal walking (control), (2) texting and walking, and (3) texting and walking whilst being cognitively distraction via a standard mathematical test performed while negotiating the obstacle course. We analyzed gait characteristics during course negotiation using a 3-dimensional motion analysis system and a general linear model and Dunnet-Hsu post-hoc procedure the normal walking condition to assess gait characteristic differences. Primary outcomes included the overall time to complete the course time and barrier contact. Secondary outcomes included obstacle clearance height, step frequency, step time, double support phase and lateral deviation.

Results: Participants took significantly longer (mean ± SD) to complete the course while texting (24.96 ± 4.20 sec) and during cognitive distraction COG (24.09 ± 3.36 sec) vs. normal walking (19.32 ± 2.28 sec; all, P<0.001). No significant differences were noted for barrier contacts (P = 0.28). Step frequency, step time, double support phase and lateral deviation all increased in duration during the texting and cognitive distraction trial. Texting and being cognitively distracted also increased obstacle clearance versus the walking condition (all, P<0.02).

Conclusions: Texting while walking and/or being cognitively distracted significantly affect gait characteristics concordant to mobile phone usage resulting in a more cautious gate pattern. Future research should also examine a similar study in older participants who may be at a greater risk of tripping with such walking deviations.

No MeSH data available.


Related in: MedlinePlus