Limits...
Improving Electrical Conductivity, Thermal Stability, and Solubility of Polyaniline-Polypyrrole Nanocomposite by Doping with Anionic Spherical Polyelectrolyte Brushes.

Su N - Nanoscale Res Lett (2015)

Bottom Line: The extent to which anionic spherical polyelectrolyte brushes (ASPB) as dopant improved the performance of polyaniline-polypyrrole (PANI-PPy) nanocomposite was investigated.It was different from dopants such as SiO2, poly(sodium-p-styrenesulfonate) (PSS), and canonic spherical polyelectrolyte brushes (CSPB) which only enhanced the performance of PANI-PPy nanocomposite on one or two sides.In addition, the effects of polymerization temperature, the molecular weight of grafted polyelectrolyte brushes, and storage time on electrical conductivity were discussed.

View Article: PubMed Central - PubMed

Affiliation: School of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai, 200093, China, suna@whu.edu.cn.

ABSTRACT
The extent to which anionic spherical polyelectrolyte brushes (ASPB) as dopant improved the performance of polyaniline-polypyrrole (PANI-PPy) nanocomposite was investigated. Different characterization and analytical methods including Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD) confirmed that ASPB serving as dopant could improve the comprehensive properties of PANI-PPy nanocomposite. It was different from dopants such as SiO2, poly(sodium-p-styrenesulfonate) (PSS), and canonic spherical polyelectrolyte brushes (CSPB) which only enhanced the performance of PANI-PPy nanocomposite on one or two sides. The electrical conductivity of (PANI-PPy)/ASPB nanocomposite at room temperature was 8.3 S/cm, which was higher than that of PANI-PPy (2.1 S/cm), (PANI-PPy)/PSS (6.8 S/cm), (PANI-PPy)/SiO2 (7.2 S/cm), and (PANI-PPy)/CSPB (2.2 S/cm). Meanwhile, (PANI-PPy)/ASPB nanocomposite possessed enhanced thermal stability and good solubility. In addition, the effects of polymerization temperature, the molecular weight of grafted polyelectrolyte brushes, and storage time on electrical conductivity were discussed.

No MeSH data available.


Related in: MedlinePlus

a FTIR spectra of (a) PANI-PPy, (b) (PANI-PPy)/ASPB, (c) (PANI-PPy)/PSS, (d) (PANI-PPy)/CSPB, and (e) (PANI-PPy)/SiO2 nanocomposites. b FTIR spectra of (a) PANI-PPy nanocomposites and (a’) the blends of the two homopolymers
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4514728&req=5

Fig2: a FTIR spectra of (a) PANI-PPy, (b) (PANI-PPy)/ASPB, (c) (PANI-PPy)/PSS, (d) (PANI-PPy)/CSPB, and (e) (PANI-PPy)/SiO2 nanocomposites. b FTIR spectra of (a) PANI-PPy nanocomposites and (a’) the blends of the two homopolymers

Mentions: FTIR spectroscopy is used to study the chemical bonding of samples (see Fig. 2). The characteristic peaks of PANI-PPy, represented by the absorption bands at 1551 and 1476 cm−1, can be attributed to the stretching vibration of the quinonoid and benzenoid rings. The peaks at 1293 and 1203 cm−1 are assigned to C–N and C=N stretching vibrations, respectively, which are consistent with the literature [30]. While adding a variety of different dopants, no new peaks appear. However, the ratio of the integrated absorption areas at approximately 1476 and 1551 cm−1 (A1476/A1551) for the composites is different, indicating that they have different conjugation lengths. The higher ratio represents the longer conjugation length [31]. The conjugation length follows the order (PANI-PPy)/ASPB > (PANI-PPy)/SiO2 > (PANI-PPy)/PSS > (PANI-PPy)/CSPB, which is also the order of the electrical conductivity of nanocomposites.Fig. 2


Improving Electrical Conductivity, Thermal Stability, and Solubility of Polyaniline-Polypyrrole Nanocomposite by Doping with Anionic Spherical Polyelectrolyte Brushes.

Su N - Nanoscale Res Lett (2015)

a FTIR spectra of (a) PANI-PPy, (b) (PANI-PPy)/ASPB, (c) (PANI-PPy)/PSS, (d) (PANI-PPy)/CSPB, and (e) (PANI-PPy)/SiO2 nanocomposites. b FTIR spectra of (a) PANI-PPy nanocomposites and (a’) the blends of the two homopolymers
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4514728&req=5

Fig2: a FTIR spectra of (a) PANI-PPy, (b) (PANI-PPy)/ASPB, (c) (PANI-PPy)/PSS, (d) (PANI-PPy)/CSPB, and (e) (PANI-PPy)/SiO2 nanocomposites. b FTIR spectra of (a) PANI-PPy nanocomposites and (a’) the blends of the two homopolymers
Mentions: FTIR spectroscopy is used to study the chemical bonding of samples (see Fig. 2). The characteristic peaks of PANI-PPy, represented by the absorption bands at 1551 and 1476 cm−1, can be attributed to the stretching vibration of the quinonoid and benzenoid rings. The peaks at 1293 and 1203 cm−1 are assigned to C–N and C=N stretching vibrations, respectively, which are consistent with the literature [30]. While adding a variety of different dopants, no new peaks appear. However, the ratio of the integrated absorption areas at approximately 1476 and 1551 cm−1 (A1476/A1551) for the composites is different, indicating that they have different conjugation lengths. The higher ratio represents the longer conjugation length [31]. The conjugation length follows the order (PANI-PPy)/ASPB > (PANI-PPy)/SiO2 > (PANI-PPy)/PSS > (PANI-PPy)/CSPB, which is also the order of the electrical conductivity of nanocomposites.Fig. 2

Bottom Line: The extent to which anionic spherical polyelectrolyte brushes (ASPB) as dopant improved the performance of polyaniline-polypyrrole (PANI-PPy) nanocomposite was investigated.It was different from dopants such as SiO2, poly(sodium-p-styrenesulfonate) (PSS), and canonic spherical polyelectrolyte brushes (CSPB) which only enhanced the performance of PANI-PPy nanocomposite on one or two sides.In addition, the effects of polymerization temperature, the molecular weight of grafted polyelectrolyte brushes, and storage time on electrical conductivity were discussed.

View Article: PubMed Central - PubMed

Affiliation: School of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai, 200093, China, suna@whu.edu.cn.

ABSTRACT
The extent to which anionic spherical polyelectrolyte brushes (ASPB) as dopant improved the performance of polyaniline-polypyrrole (PANI-PPy) nanocomposite was investigated. Different characterization and analytical methods including Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD) confirmed that ASPB serving as dopant could improve the comprehensive properties of PANI-PPy nanocomposite. It was different from dopants such as SiO2, poly(sodium-p-styrenesulfonate) (PSS), and canonic spherical polyelectrolyte brushes (CSPB) which only enhanced the performance of PANI-PPy nanocomposite on one or two sides. The electrical conductivity of (PANI-PPy)/ASPB nanocomposite at room temperature was 8.3 S/cm, which was higher than that of PANI-PPy (2.1 S/cm), (PANI-PPy)/PSS (6.8 S/cm), (PANI-PPy)/SiO2 (7.2 S/cm), and (PANI-PPy)/CSPB (2.2 S/cm). Meanwhile, (PANI-PPy)/ASPB nanocomposite possessed enhanced thermal stability and good solubility. In addition, the effects of polymerization temperature, the molecular weight of grafted polyelectrolyte brushes, and storage time on electrical conductivity were discussed.

No MeSH data available.


Related in: MedlinePlus