Limits...
Thermal and X-ray diffraction analysis studies during the decomposition of ammonium uranyl nitrate.

Kim BH, Lee YB, Prelas MA, Ghosh TK - J Radioanal Nucl Chem (2012)

Bottom Line: Two types of ammonium uranyl nitrate (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3, were thermally decomposed and reduced in a TG-DTA unit in nitrogen, air, and hydrogen atmospheres.The amorphous UO3 obtained from decomposition of NH4UO2(NO3)3 was crystallized to α-UO3 under a nitrogen and air atmosphere, and to β-UO3 under a hydrogen atmosphere without a change in weight.Under each atmosphere, the reaction paths of (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3 were as follows: under a nitrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; under an air atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; and under a hydrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → α-U3O8 → UO2, NH4 UO2(NO3)3 → A-UO3 → β-UO3 → α-U3O8 → UO2.

View Article: PubMed Central - PubMed

Affiliation: Department of Fast Reactor Technology Development, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Daejeon, 305-353 Korea.

ABSTRACT

Two types of ammonium uranyl nitrate (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3, were thermally decomposed and reduced in a TG-DTA unit in nitrogen, air, and hydrogen atmospheres. Various intermediate phases produced by the thermal decomposition and reduction process were investigated by an X-ray diffraction analysis and a TG/DTA analysis. Both (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3 decomposed to amorphous UO3 regardless of the atmosphere used. The amorphous UO3 from (NH4)2UO2(NO3)4·2H2O was crystallized to γ-UO3 regardless of the atmosphere used without a change in weight. The amorphous UO3 obtained from decomposition of NH4UO2(NO3)3 was crystallized to α-UO3 under a nitrogen and air atmosphere, and to β-UO3 under a hydrogen atmosphere without a change in weight. Under each atmosphere, the reaction paths of (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3 were as follows: under a nitrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; under an air atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; and under a hydrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → α-U3O8 → UO2, NH4 UO2(NO3)3 → A-UO3 → β-UO3 → α-U3O8 → UO2.

No MeSH data available.


X-ray diffraction patterns of intermediates produced from (NH4)UO2(NO3)3 in air atmosphere
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4514459&req=5

Fig7: X-ray diffraction patterns of intermediates produced from (NH4)UO2(NO3)3 in air atmosphere

Mentions: As shown in Fig. 6, in the case of NH4UO2(NO3)3, under a nitrogen atmosphere, amorphous UO3 was produced at 390 °C, However, decomposition (NH4)2UO2(NO3)4·2H2O (See Fig. 6b) resulted in α-UO3 at 480 °C (See Fig. 6c). When comparing this phenomenon with the one in which (NH4)2UO2(NO3)4·2H2O produced γ-UO3 at a temperature of 480 °C, it suggests that NH4UO2(NO3)3 was thermally decomposed through a different phase change route compared to (NH4)2UO2(NO3)4·2H2O decomposition route. Subsequently, the α-UO3 phase, which went through an endothermic reaction at 540 °C, changed into α-U3O8 with a crystal structure at a temperature of 800 °C (See Fig. 6d). As shown in Fig. 7, the thermal decomposition process under an air atmosphere was found to be the same as that under a nitrogen atmosphere.Fig. 6


Thermal and X-ray diffraction analysis studies during the decomposition of ammonium uranyl nitrate.

Kim BH, Lee YB, Prelas MA, Ghosh TK - J Radioanal Nucl Chem (2012)

X-ray diffraction patterns of intermediates produced from (NH4)UO2(NO3)3 in air atmosphere
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4514459&req=5

Fig7: X-ray diffraction patterns of intermediates produced from (NH4)UO2(NO3)3 in air atmosphere
Mentions: As shown in Fig. 6, in the case of NH4UO2(NO3)3, under a nitrogen atmosphere, amorphous UO3 was produced at 390 °C, However, decomposition (NH4)2UO2(NO3)4·2H2O (See Fig. 6b) resulted in α-UO3 at 480 °C (See Fig. 6c). When comparing this phenomenon with the one in which (NH4)2UO2(NO3)4·2H2O produced γ-UO3 at a temperature of 480 °C, it suggests that NH4UO2(NO3)3 was thermally decomposed through a different phase change route compared to (NH4)2UO2(NO3)4·2H2O decomposition route. Subsequently, the α-UO3 phase, which went through an endothermic reaction at 540 °C, changed into α-U3O8 with a crystal structure at a temperature of 800 °C (See Fig. 6d). As shown in Fig. 7, the thermal decomposition process under an air atmosphere was found to be the same as that under a nitrogen atmosphere.Fig. 6

Bottom Line: Two types of ammonium uranyl nitrate (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3, were thermally decomposed and reduced in a TG-DTA unit in nitrogen, air, and hydrogen atmospheres.The amorphous UO3 obtained from decomposition of NH4UO2(NO3)3 was crystallized to α-UO3 under a nitrogen and air atmosphere, and to β-UO3 under a hydrogen atmosphere without a change in weight.Under each atmosphere, the reaction paths of (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3 were as follows: under a nitrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; under an air atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; and under a hydrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → α-U3O8 → UO2, NH4 UO2(NO3)3 → A-UO3 → β-UO3 → α-U3O8 → UO2.

View Article: PubMed Central - PubMed

Affiliation: Department of Fast Reactor Technology Development, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Daejeon, 305-353 Korea.

ABSTRACT

Two types of ammonium uranyl nitrate (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3, were thermally decomposed and reduced in a TG-DTA unit in nitrogen, air, and hydrogen atmospheres. Various intermediate phases produced by the thermal decomposition and reduction process were investigated by an X-ray diffraction analysis and a TG/DTA analysis. Both (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3 decomposed to amorphous UO3 regardless of the atmosphere used. The amorphous UO3 from (NH4)2UO2(NO3)4·2H2O was crystallized to γ-UO3 regardless of the atmosphere used without a change in weight. The amorphous UO3 obtained from decomposition of NH4UO2(NO3)3 was crystallized to α-UO3 under a nitrogen and air atmosphere, and to β-UO3 under a hydrogen atmosphere without a change in weight. Under each atmosphere, the reaction paths of (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3 were as follows: under a nitrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; under an air atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; and under a hydrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → α-U3O8 → UO2, NH4 UO2(NO3)3 → A-UO3 → β-UO3 → α-U3O8 → UO2.

No MeSH data available.