Limits...
White matter injury restoration after stem cell administration in subcortical ischemic stroke.

Otero-Ortega L, Gutiérrez-Fernández M, Ramos-Cejudo J, Rodríguez-Frutos B, Fuentes B, Sobrino T, Hernanz TN, Campos F, López JA, Cerdán S, Vázquez J, Díez-Tejedor E - Stem Cell Res Ther (2015)

Bottom Line: The treated animals also showed higher levels of white matter-associated markers in the injured area than the control group.Proteomics analysis of the ADMSC secretome identified 2,416 proteins, not all of them previously described to be involved in brain plasticity.These findings are associated with improved functional recovery after stroke.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain. laura.otero@salud.madrid.org.

ABSTRACT

Introduction: Despite its high incidence, nerve fiber (axon and myelin) damage after cerebral infarct has not yet been extensively investigated. The aim of this study was to investigate white matter repair after adipose-derived mesenchymal stem cell (ADMSC) administration in an experimental model of subcortical stroke. Furthermore, we aimed to analyze the ADMSC secretome and whether this could be implicated in this repair function.

Methods: An animal model of subcortical ischemic stroke with white matter affectation was induced in rats by injection of endothelin-1. At 24 hours, 2 × 10(6) ADMSC were administered intravenously to the treatment group. Functional evaluation, lesion size, fiber tract integrity, cell death, proliferation, white matter repair markers (Olig-2, NF, and MBP) and NogoA were all studied after sacrifice (7 days and 28 days). ADMSC migration and implantation in the brain as well as proteomics analysis and functions of the secretome were also analyzed.

Results: Neither ADMSC migration nor implantation to the brain was observed after ADMSC administration. In contrast, ADMSC implantation was detected in peripheral organs. The treatment group showed a smaller functional deficit, smaller lesion area, less cell death, more oligodendrocyte proliferation, more white matter connectivity and higher amounts of myelin formation. The treated animals also showed higher levels of white matter-associated markers in the injured area than the control group. Proteomics analysis of the ADMSC secretome identified 2,416 proteins, not all of them previously described to be involved in brain plasticity.

Conclusions: White matter integrity in subcortical stroke is in part restored by ADMSC treatment; this is mediated by repair molecular factors implicated in axonal sprouting, remyelination and oligodendrogenesis. These findings are associated with improved functional recovery after stroke.

No MeSH data available.


Related in: MedlinePlus

Characterization and biodistribution of ADMSC. a ADMSC characterization by flow cytometry. Rat ADMSC were labeled with CD29, CD90, CD11b, and CD45 and analyzed by flow cytometry. Of the ADMSC population, 95 % expressed CD29 and CD90. Additionally, these cells lacked expression (5 % positive) of CD11b, CD45. b Migration and implantation in the brain and peripheral organs (liver, lung and spleen) of DiI- and CD90-labelled cells at 24 hours after treatment. AD-MSC adipose-derived mesenchymal stem cells, DAPI 4′,6-diamino-2-phenylindole, FITC fluorescein isothiocyanate, PE phycoerythrin
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4513704&req=5

Fig1: Characterization and biodistribution of ADMSC. a ADMSC characterization by flow cytometry. Rat ADMSC were labeled with CD29, CD90, CD11b, and CD45 and analyzed by flow cytometry. Of the ADMSC population, 95 % expressed CD29 and CD90. Additionally, these cells lacked expression (5 % positive) of CD11b, CD45. b Migration and implantation in the brain and peripheral organs (liver, lung and spleen) of DiI- and CD90-labelled cells at 24 hours after treatment. AD-MSC adipose-derived mesenchymal stem cells, DAPI 4′,6-diamino-2-phenylindole, FITC fluorescein isothiocyanate, PE phycoerythrin

Mentions: ADMSC showed typical fibroblast-like cell morphology and their phenotype was CD90+/CD29+/CD45–/CD11b– (Fig. 1a).Fig. 1


White matter injury restoration after stem cell administration in subcortical ischemic stroke.

Otero-Ortega L, Gutiérrez-Fernández M, Ramos-Cejudo J, Rodríguez-Frutos B, Fuentes B, Sobrino T, Hernanz TN, Campos F, López JA, Cerdán S, Vázquez J, Díez-Tejedor E - Stem Cell Res Ther (2015)

Characterization and biodistribution of ADMSC. a ADMSC characterization by flow cytometry. Rat ADMSC were labeled with CD29, CD90, CD11b, and CD45 and analyzed by flow cytometry. Of the ADMSC population, 95 % expressed CD29 and CD90. Additionally, these cells lacked expression (5 % positive) of CD11b, CD45. b Migration and implantation in the brain and peripheral organs (liver, lung and spleen) of DiI- and CD90-labelled cells at 24 hours after treatment. AD-MSC adipose-derived mesenchymal stem cells, DAPI 4′,6-diamino-2-phenylindole, FITC fluorescein isothiocyanate, PE phycoerythrin
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4513704&req=5

Fig1: Characterization and biodistribution of ADMSC. a ADMSC characterization by flow cytometry. Rat ADMSC were labeled with CD29, CD90, CD11b, and CD45 and analyzed by flow cytometry. Of the ADMSC population, 95 % expressed CD29 and CD90. Additionally, these cells lacked expression (5 % positive) of CD11b, CD45. b Migration and implantation in the brain and peripheral organs (liver, lung and spleen) of DiI- and CD90-labelled cells at 24 hours after treatment. AD-MSC adipose-derived mesenchymal stem cells, DAPI 4′,6-diamino-2-phenylindole, FITC fluorescein isothiocyanate, PE phycoerythrin
Mentions: ADMSC showed typical fibroblast-like cell morphology and their phenotype was CD90+/CD29+/CD45–/CD11b– (Fig. 1a).Fig. 1

Bottom Line: The treated animals also showed higher levels of white matter-associated markers in the injured area than the control group.Proteomics analysis of the ADMSC secretome identified 2,416 proteins, not all of them previously described to be involved in brain plasticity.These findings are associated with improved functional recovery after stroke.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain. laura.otero@salud.madrid.org.

ABSTRACT

Introduction: Despite its high incidence, nerve fiber (axon and myelin) damage after cerebral infarct has not yet been extensively investigated. The aim of this study was to investigate white matter repair after adipose-derived mesenchymal stem cell (ADMSC) administration in an experimental model of subcortical stroke. Furthermore, we aimed to analyze the ADMSC secretome and whether this could be implicated in this repair function.

Methods: An animal model of subcortical ischemic stroke with white matter affectation was induced in rats by injection of endothelin-1. At 24 hours, 2 × 10(6) ADMSC were administered intravenously to the treatment group. Functional evaluation, lesion size, fiber tract integrity, cell death, proliferation, white matter repair markers (Olig-2, NF, and MBP) and NogoA were all studied after sacrifice (7 days and 28 days). ADMSC migration and implantation in the brain as well as proteomics analysis and functions of the secretome were also analyzed.

Results: Neither ADMSC migration nor implantation to the brain was observed after ADMSC administration. In contrast, ADMSC implantation was detected in peripheral organs. The treatment group showed a smaller functional deficit, smaller lesion area, less cell death, more oligodendrocyte proliferation, more white matter connectivity and higher amounts of myelin formation. The treated animals also showed higher levels of white matter-associated markers in the injured area than the control group. Proteomics analysis of the ADMSC secretome identified 2,416 proteins, not all of them previously described to be involved in brain plasticity.

Conclusions: White matter integrity in subcortical stroke is in part restored by ADMSC treatment; this is mediated by repair molecular factors implicated in axonal sprouting, remyelination and oligodendrogenesis. These findings are associated with improved functional recovery after stroke.

No MeSH data available.


Related in: MedlinePlus