Limits...
Lipase-catalyzed biodiesel production and quality with Jatropha curcas oil: exploring its potential for Central America.

Bueso F, Moreno L, Cedeño M, Manzanarez K - J Biol Eng (2015)

Bottom Line: After 24 h transesterification, Jatropha (81 %) and palm oil (86 %) biodiesel yields with TL as catalyst were significantly higher than CA (<70 %) but inferior to NaOH (>90 %).Enzymatic catalysts (TL and CA) produced Jatropha biodiesel with optimum flow properties but did not complied with ASTM D6751 stability parameters (free fatty acid content and oil stability index).Lower quality due to incomplete alcoholysis and esterification, potential added costs due to need of more than 24 h to achieve comparable biodiesel yields and extra post-transesterification refining reactions are among the remaining drawbacks for the environmentally friendlier enzymatic catalysis of crude Jatropha oil to become an economically viable alternative to chemical catalysis.

View Article: PubMed Central - PubMed

Affiliation: Department of Food Science and Technology, EAP Zamorano University, P.O. Box 93, Tegucigalpa, Honduras.

ABSTRACT

Background: Extensive native Jatropha curcas L. (Jatropha) crop areas have been planted in Central America marginal lands since 2008 as a non-edible prospective feedstock alternative to high-value, edible palm oil. Jatropha biodiesel is currently exclusively produced in the region at commercial scale utilizing alkaline catalysts. Recently, a free, soluble Thermomyces lanuginosus (TL) 1,3 specific lipase has shown promise as biocatalyst, reportedly yielding up to 96 % ASTM D6751 compliant biodiesel after 24 h transesterification of soybean, canola oils and other feedstocks. Biodiesel conversion rate and quality of enzymatically catalyzed transesterification of Jatropha oil was evaluated. Two lipases: free, soluble TL and immobilized Candida antarctica (CA) catalyzed methanolic transesterification of crude Jatropha and refined palm oil.

Results: Jatropha yields were similar to palm biodiesel with NaOH as catalyst. After 24 h transesterification, Jatropha (81 %) and palm oil (86 %) biodiesel yields with TL as catalyst were significantly higher than CA (<70 %) but inferior to NaOH (>90 %). Enzymatic catalysts (TL and CA) produced Jatropha biodiesel with optimum flow properties but did not complied with ASTM D6751 stability parameters (free fatty acid content and oil stability index).

Conclusions: Biodiesel production with filtered, degummed, low FFA Jatropha oil using a free liquid lipase (TL) as catalyst showed higher yielding potential than immobilized CA lipase as substitute of RBD palm oil with alkaline catalyst. However, Jatropha enzymatic biodiesel yield and stability were inferior to alkaline catalyzed biodiesel and not in compliance with international quality standards. Lower quality due to incomplete alcoholysis and esterification, potential added costs due to need of more than 24 h to achieve comparable biodiesel yields and extra post-transesterification refining reactions are among the remaining drawbacks for the environmentally friendlier enzymatic catalysis of crude Jatropha oil to become an economically viable alternative to chemical catalysis.

No MeSH data available.


Enzymatic biodiesel produced with Jatropha and palm oil. a The alkaline-catalyzed biodiesel produces a reddish-brown glycerol phase. b Enzymatic biodiesel catalyzed by CA produced a cleaner (white) glycerol phase. c Jatropha biodiesel catalyzed by TL. d Palm biodiesel produced with TL enzymatic catalyst. One advantage of enzymatic biodiesel over alkaline catalyzed biodiesel is a cleaner, higher-quality glycerine by-product
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4513677&req=5

Fig1: Enzymatic biodiesel produced with Jatropha and palm oil. a The alkaline-catalyzed biodiesel produces a reddish-brown glycerol phase. b Enzymatic biodiesel catalyzed by CA produced a cleaner (white) glycerol phase. c Jatropha biodiesel catalyzed by TL. d Palm biodiesel produced with TL enzymatic catalyst. One advantage of enzymatic biodiesel over alkaline catalyzed biodiesel is a cleaner, higher-quality glycerine by-product

Mentions: Biodiesel from palm and Jatropha oil produced with enzymatic catalysts (Fig. 1) had higher FFA content than the maximum allowed by ASTM D6751, while biodiesel catalyzed by NaOH (Fig. 1a) complied with the standard (Table 2). Biodiesel produced with CA (Fig. 1b) as catalyst had significantly higher FFA than biodiesel catalyzed by TL (Fig. 1c, d). Jatropha biodiesel (Fig. 1c) had higher FFA content than palm biodiesel (Fig. 1d) when enzymatic catalysts were used (Table 2). FFA content of palm and Jatropha oils was <0.5 % before transesterification. Therefore, the high FFA content in palm and Jatropha biodiesel produced with TL (11–15 %) and especially CA (14–16 %) lipases suggest both enzymes were able to hydrolyze triacylglycerols into FFA, but could not completely esterify them with methanol into FAME within 24 h under conditions of this study (Table 2).Fig. 1


Lipase-catalyzed biodiesel production and quality with Jatropha curcas oil: exploring its potential for Central America.

Bueso F, Moreno L, Cedeño M, Manzanarez K - J Biol Eng (2015)

Enzymatic biodiesel produced with Jatropha and palm oil. a The alkaline-catalyzed biodiesel produces a reddish-brown glycerol phase. b Enzymatic biodiesel catalyzed by CA produced a cleaner (white) glycerol phase. c Jatropha biodiesel catalyzed by TL. d Palm biodiesel produced with TL enzymatic catalyst. One advantage of enzymatic biodiesel over alkaline catalyzed biodiesel is a cleaner, higher-quality glycerine by-product
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4513677&req=5

Fig1: Enzymatic biodiesel produced with Jatropha and palm oil. a The alkaline-catalyzed biodiesel produces a reddish-brown glycerol phase. b Enzymatic biodiesel catalyzed by CA produced a cleaner (white) glycerol phase. c Jatropha biodiesel catalyzed by TL. d Palm biodiesel produced with TL enzymatic catalyst. One advantage of enzymatic biodiesel over alkaline catalyzed biodiesel is a cleaner, higher-quality glycerine by-product
Mentions: Biodiesel from palm and Jatropha oil produced with enzymatic catalysts (Fig. 1) had higher FFA content than the maximum allowed by ASTM D6751, while biodiesel catalyzed by NaOH (Fig. 1a) complied with the standard (Table 2). Biodiesel produced with CA (Fig. 1b) as catalyst had significantly higher FFA than biodiesel catalyzed by TL (Fig. 1c, d). Jatropha biodiesel (Fig. 1c) had higher FFA content than palm biodiesel (Fig. 1d) when enzymatic catalysts were used (Table 2). FFA content of palm and Jatropha oils was <0.5 % before transesterification. Therefore, the high FFA content in palm and Jatropha biodiesel produced with TL (11–15 %) and especially CA (14–16 %) lipases suggest both enzymes were able to hydrolyze triacylglycerols into FFA, but could not completely esterify them with methanol into FAME within 24 h under conditions of this study (Table 2).Fig. 1

Bottom Line: After 24 h transesterification, Jatropha (81 %) and palm oil (86 %) biodiesel yields with TL as catalyst were significantly higher than CA (<70 %) but inferior to NaOH (>90 %).Enzymatic catalysts (TL and CA) produced Jatropha biodiesel with optimum flow properties but did not complied with ASTM D6751 stability parameters (free fatty acid content and oil stability index).Lower quality due to incomplete alcoholysis and esterification, potential added costs due to need of more than 24 h to achieve comparable biodiesel yields and extra post-transesterification refining reactions are among the remaining drawbacks for the environmentally friendlier enzymatic catalysis of crude Jatropha oil to become an economically viable alternative to chemical catalysis.

View Article: PubMed Central - PubMed

Affiliation: Department of Food Science and Technology, EAP Zamorano University, P.O. Box 93, Tegucigalpa, Honduras.

ABSTRACT

Background: Extensive native Jatropha curcas L. (Jatropha) crop areas have been planted in Central America marginal lands since 2008 as a non-edible prospective feedstock alternative to high-value, edible palm oil. Jatropha biodiesel is currently exclusively produced in the region at commercial scale utilizing alkaline catalysts. Recently, a free, soluble Thermomyces lanuginosus (TL) 1,3 specific lipase has shown promise as biocatalyst, reportedly yielding up to 96 % ASTM D6751 compliant biodiesel after 24 h transesterification of soybean, canola oils and other feedstocks. Biodiesel conversion rate and quality of enzymatically catalyzed transesterification of Jatropha oil was evaluated. Two lipases: free, soluble TL and immobilized Candida antarctica (CA) catalyzed methanolic transesterification of crude Jatropha and refined palm oil.

Results: Jatropha yields were similar to palm biodiesel with NaOH as catalyst. After 24 h transesterification, Jatropha (81 %) and palm oil (86 %) biodiesel yields with TL as catalyst were significantly higher than CA (<70 %) but inferior to NaOH (>90 %). Enzymatic catalysts (TL and CA) produced Jatropha biodiesel with optimum flow properties but did not complied with ASTM D6751 stability parameters (free fatty acid content and oil stability index).

Conclusions: Biodiesel production with filtered, degummed, low FFA Jatropha oil using a free liquid lipase (TL) as catalyst showed higher yielding potential than immobilized CA lipase as substitute of RBD palm oil with alkaline catalyst. However, Jatropha enzymatic biodiesel yield and stability were inferior to alkaline catalyzed biodiesel and not in compliance with international quality standards. Lower quality due to incomplete alcoholysis and esterification, potential added costs due to need of more than 24 h to achieve comparable biodiesel yields and extra post-transesterification refining reactions are among the remaining drawbacks for the environmentally friendlier enzymatic catalysis of crude Jatropha oil to become an economically viable alternative to chemical catalysis.

No MeSH data available.