Limits...
Apoptosis-Inducing Activity of Marine Sponge Haliclona sp. Extracts Collected from Kosrae in Nonsmall Cell Lung Cancer A549 Cells.

Bae W, Lim HK, Kim KM, Cho H, Lee SY, Jeong CS, Lee HS, Jung J - Evid Based Complement Alternat Med (2015)

Bottom Line: Further, methanol extracts of Haliclona sp. significantly inhibited cell proliferation and cell viability.A549 cells treated with Haliclona sp. demonstrated induced expression of c-Jun N-terminal kinase (JNK), p53, p21, caspase-8, and caspase-3.The percentage of apoptotic cells significantly increased in A549 cultures treated with Haliclona sp.

View Article: PubMed Central - PubMed

Affiliation: College of Pharmacy, Duksung Women's University, Seoul 132-714, Republic of Korea.

ABSTRACT
Although various anticancer drugs have been developed for the treatment of nonsmall cell lung cancer, chemotherapeutic efficacy is still limited. Natural products such as phytochemicals have been screened as novel alternative materials, but alternative funds such as marine bioresources remain largely untapped. Of these resources, marine sponges have undergone the most scrutiny for their biological activities, including antiinflammatory, antiviral, and anticancer properties. However, the biological mechanisms of the activities of these marine sponges are still unclear. We investigated the anticancer activity of marine sponges collected from Kosrae in Micronesia and examined their mechanisms of action using nonsmall cell lung cancer A549 cells as a model system. Of 20 specimens, the Haliclona sp. (KO1304-328) showed both dose- and time-dependent cytotoxicity. Further, methanol extracts of Haliclona sp. significantly inhibited cell proliferation and cell viability. A549 cells treated with Haliclona sp. demonstrated induced expression of c-Jun N-terminal kinase (JNK), p53, p21, caspase-8, and caspase-3. The percentage of apoptotic cells significantly increased in A549 cultures treated with Haliclona sp. These results indicate that Haliclona sp. induces apoptosis via the JNK-p53 pathway and caspase-8, suggesting that this marine sponge is a good resource for the development of drugs for treatment of nonsmall cell lung cancer.

No MeSH data available.


Related in: MedlinePlus

Haliclona sp. extract induced cell cycle arrest in A549 cells. (a) DNA histograms of A549 cells treated with Haliclona sp. extract (upper, 25 μg/mL; lower, 50 μg/mL). The cell cycle distribution of A549 treated with Haliclona sp. extract (25 μg/mL (b) and 50 μg/mL (c)) was analyzed by flow cytometry.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4508479&req=5

fig4: Haliclona sp. extract induced cell cycle arrest in A549 cells. (a) DNA histograms of A549 cells treated with Haliclona sp. extract (upper, 25 μg/mL; lower, 50 μg/mL). The cell cycle distribution of A549 treated with Haliclona sp. extract (25 μg/mL (b) and 50 μg/mL (c)) was analyzed by flow cytometry.

Mentions: Inhibition of cell proliferation was commonly induced by the cell cycle arrest [13, 14]. Radiation is well known for inducing the permanent G1 arrest and suppressing the cell proliferation [13]. So, we investigated if Haliclona sp. extracts affected the cell cycle as radiation. For analysis of cell cycle, A549 cells treated with Haliclona sp. extracts were stained with PI solution and detected the phases of the cycle (Figure 4). Haliclona sp. showed slight and temporary G1 phase arrest (Figures 4(b) and 4(c)). The results suggested that Haliclona sp. could delay the cell proliferation.


Apoptosis-Inducing Activity of Marine Sponge Haliclona sp. Extracts Collected from Kosrae in Nonsmall Cell Lung Cancer A549 Cells.

Bae W, Lim HK, Kim KM, Cho H, Lee SY, Jeong CS, Lee HS, Jung J - Evid Based Complement Alternat Med (2015)

Haliclona sp. extract induced cell cycle arrest in A549 cells. (a) DNA histograms of A549 cells treated with Haliclona sp. extract (upper, 25 μg/mL; lower, 50 μg/mL). The cell cycle distribution of A549 treated with Haliclona sp. extract (25 μg/mL (b) and 50 μg/mL (c)) was analyzed by flow cytometry.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4508479&req=5

fig4: Haliclona sp. extract induced cell cycle arrest in A549 cells. (a) DNA histograms of A549 cells treated with Haliclona sp. extract (upper, 25 μg/mL; lower, 50 μg/mL). The cell cycle distribution of A549 treated with Haliclona sp. extract (25 μg/mL (b) and 50 μg/mL (c)) was analyzed by flow cytometry.
Mentions: Inhibition of cell proliferation was commonly induced by the cell cycle arrest [13, 14]. Radiation is well known for inducing the permanent G1 arrest and suppressing the cell proliferation [13]. So, we investigated if Haliclona sp. extracts affected the cell cycle as radiation. For analysis of cell cycle, A549 cells treated with Haliclona sp. extracts were stained with PI solution and detected the phases of the cycle (Figure 4). Haliclona sp. showed slight and temporary G1 phase arrest (Figures 4(b) and 4(c)). The results suggested that Haliclona sp. could delay the cell proliferation.

Bottom Line: Further, methanol extracts of Haliclona sp. significantly inhibited cell proliferation and cell viability.A549 cells treated with Haliclona sp. demonstrated induced expression of c-Jun N-terminal kinase (JNK), p53, p21, caspase-8, and caspase-3.The percentage of apoptotic cells significantly increased in A549 cultures treated with Haliclona sp.

View Article: PubMed Central - PubMed

Affiliation: College of Pharmacy, Duksung Women's University, Seoul 132-714, Republic of Korea.

ABSTRACT
Although various anticancer drugs have been developed for the treatment of nonsmall cell lung cancer, chemotherapeutic efficacy is still limited. Natural products such as phytochemicals have been screened as novel alternative materials, but alternative funds such as marine bioresources remain largely untapped. Of these resources, marine sponges have undergone the most scrutiny for their biological activities, including antiinflammatory, antiviral, and anticancer properties. However, the biological mechanisms of the activities of these marine sponges are still unclear. We investigated the anticancer activity of marine sponges collected from Kosrae in Micronesia and examined their mechanisms of action using nonsmall cell lung cancer A549 cells as a model system. Of 20 specimens, the Haliclona sp. (KO1304-328) showed both dose- and time-dependent cytotoxicity. Further, methanol extracts of Haliclona sp. significantly inhibited cell proliferation and cell viability. A549 cells treated with Haliclona sp. demonstrated induced expression of c-Jun N-terminal kinase (JNK), p53, p21, caspase-8, and caspase-3. The percentage of apoptotic cells significantly increased in A549 cultures treated with Haliclona sp. These results indicate that Haliclona sp. induces apoptosis via the JNK-p53 pathway and caspase-8, suggesting that this marine sponge is a good resource for the development of drugs for treatment of nonsmall cell lung cancer.

No MeSH data available.


Related in: MedlinePlus