Limits...
Shynthesis and Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells (Portunus pelagicus) and Its Potency in Safeguard against to Dental Demineralizations.

Raya I, Mayasari E, Yahya A, Syahrul M, Latunra AI - Int J Biomater (2015)

Bottom Line: Calcination was conducted to crab's shells of Portunus pelagicus at temperature of 1000°C for 5 hours.The results of calcination was reacted with (NH4)2HPO4, then dried at 110°C for 5 hours.The results showed that the rate of tooth demineralization in acetate buffer decreased significantly with the provision of hydroxyapatite into a solution where the addition of the magnitude of hydroxyapatite is greater decrease in the rate of tooth demineralization.

View Article: PubMed Central - PubMed

Affiliation: Chemistry Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia.

ABSTRACT
Crab's shells of Portunus pelagicus species were used as raw materials for synthesis of hydroxyapatite were used for protection against demineralization of teeth. Calcination was conducted to crab's shells of Portunus pelagicus at temperature of 1000°C for 5 hours. The results of calcination was reacted with (NH4)2HPO4, then dried at 110°C for 5 hours. Sintering was conducted to results of precipitated dried with temperature variations 400-1000°C for a hour each variation of temperature then characterized by X-ray diffractometer and FTIR in order to obtain the optimum formation temperature of hydroxyapatite is 800°C. The hydroxyapatite is then tested its effectiveness in protection against tooth demineralization using acetate buffer pH 5.0 with 1 M acetic acid concentration with the addition of hydroxyapatite and time variation of immersion. The results showed that the rate of tooth demineralization in acetate buffer decreased significantly with the provision of hydroxyapatite into a solution where the addition of the magnitude of hydroxyapatite is greater decrease in the rate of tooth demineralization.

No MeSH data available.


Related in: MedlinePlus

Percentage probability sample phase sintering at a temperature 800°C, where HA = Ca10(PO4)6(OH)2, α-TKF = α-Ca3(PO4)2, β-TKF = βCa3(PO4)2, AKA = Ca10(PO4)6CO3 and AKB = Ca10(PO4)6CO3(OH)2.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4508471&req=5

fig5: Percentage probability sample phase sintering at a temperature 800°C, where HA = Ca10(PO4)6(OH)2, α-TKF = α-Ca3(PO4)2, β-TKF = βCa3(PO4)2, AKA = Ca10(PO4)6CO3 and AKB = Ca10(PO4)6CO3(OH)2.

Mentions: The formations of hydroxyapatite phase had been dominated at 800°C confirmed by percentage probability sample phase (Figure 5), in which the percentage of hydroxyapatite phase formed around 46.61%, while phases of α-Ca3(PO4)2 and phase β-Ca3(PO4)2 are 17.76% and 19.37%, respectively. However, also there is still presence of a phase Ca10(PO4)6CO3 and Ca10(PO4)6CO3(OH)2 with a range of 11.84% and 4.43%, respectively, which indicates the presence of carbonates. All data coming from the calculations of the XRD spectrum used its software.


Shynthesis and Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells (Portunus pelagicus) and Its Potency in Safeguard against to Dental Demineralizations.

Raya I, Mayasari E, Yahya A, Syahrul M, Latunra AI - Int J Biomater (2015)

Percentage probability sample phase sintering at a temperature 800°C, where HA = Ca10(PO4)6(OH)2, α-TKF = α-Ca3(PO4)2, β-TKF = βCa3(PO4)2, AKA = Ca10(PO4)6CO3 and AKB = Ca10(PO4)6CO3(OH)2.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4508471&req=5

fig5: Percentage probability sample phase sintering at a temperature 800°C, where HA = Ca10(PO4)6(OH)2, α-TKF = α-Ca3(PO4)2, β-TKF = βCa3(PO4)2, AKA = Ca10(PO4)6CO3 and AKB = Ca10(PO4)6CO3(OH)2.
Mentions: The formations of hydroxyapatite phase had been dominated at 800°C confirmed by percentage probability sample phase (Figure 5), in which the percentage of hydroxyapatite phase formed around 46.61%, while phases of α-Ca3(PO4)2 and phase β-Ca3(PO4)2 are 17.76% and 19.37%, respectively. However, also there is still presence of a phase Ca10(PO4)6CO3 and Ca10(PO4)6CO3(OH)2 with a range of 11.84% and 4.43%, respectively, which indicates the presence of carbonates. All data coming from the calculations of the XRD spectrum used its software.

Bottom Line: Calcination was conducted to crab's shells of Portunus pelagicus at temperature of 1000°C for 5 hours.The results of calcination was reacted with (NH4)2HPO4, then dried at 110°C for 5 hours.The results showed that the rate of tooth demineralization in acetate buffer decreased significantly with the provision of hydroxyapatite into a solution where the addition of the magnitude of hydroxyapatite is greater decrease in the rate of tooth demineralization.

View Article: PubMed Central - PubMed

Affiliation: Chemistry Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia.

ABSTRACT
Crab's shells of Portunus pelagicus species were used as raw materials for synthesis of hydroxyapatite were used for protection against demineralization of teeth. Calcination was conducted to crab's shells of Portunus pelagicus at temperature of 1000°C for 5 hours. The results of calcination was reacted with (NH4)2HPO4, then dried at 110°C for 5 hours. Sintering was conducted to results of precipitated dried with temperature variations 400-1000°C for a hour each variation of temperature then characterized by X-ray diffractometer and FTIR in order to obtain the optimum formation temperature of hydroxyapatite is 800°C. The hydroxyapatite is then tested its effectiveness in protection against tooth demineralization using acetate buffer pH 5.0 with 1 M acetic acid concentration with the addition of hydroxyapatite and time variation of immersion. The results showed that the rate of tooth demineralization in acetate buffer decreased significantly with the provision of hydroxyapatite into a solution where the addition of the magnitude of hydroxyapatite is greater decrease in the rate of tooth demineralization.

No MeSH data available.


Related in: MedlinePlus