Limits...
Shynthesis and Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells (Portunus pelagicus) and Its Potency in Safeguard against to Dental Demineralizations.

Raya I, Mayasari E, Yahya A, Syahrul M, Latunra AI - Int J Biomater (2015)

Bottom Line: Calcination was conducted to crab's shells of Portunus pelagicus at temperature of 1000°C for 5 hours.The results of calcination was reacted with (NH4)2HPO4, then dried at 110°C for 5 hours.The results showed that the rate of tooth demineralization in acetate buffer decreased significantly with the provision of hydroxyapatite into a solution where the addition of the magnitude of hydroxyapatite is greater decrease in the rate of tooth demineralization.

View Article: PubMed Central - PubMed

Affiliation: Chemistry Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia.

ABSTRACT
Crab's shells of Portunus pelagicus species were used as raw materials for synthesis of hydroxyapatite were used for protection against demineralization of teeth. Calcination was conducted to crab's shells of Portunus pelagicus at temperature of 1000°C for 5 hours. The results of calcination was reacted with (NH4)2HPO4, then dried at 110°C for 5 hours. Sintering was conducted to results of precipitated dried with temperature variations 400-1000°C for a hour each variation of temperature then characterized by X-ray diffractometer and FTIR in order to obtain the optimum formation temperature of hydroxyapatite is 800°C. The hydroxyapatite is then tested its effectiveness in protection against tooth demineralization using acetate buffer pH 5.0 with 1 M acetic acid concentration with the addition of hydroxyapatite and time variation of immersion. The results showed that the rate of tooth demineralization in acetate buffer decreased significantly with the provision of hydroxyapatite into a solution where the addition of the magnitude of hydroxyapatite is greater decrease in the rate of tooth demineralization.

No MeSH data available.


Related in: MedlinePlus

Diffractogram of crab shell; (a) before calcinations and (b) after calcinations at temperature 1000°C for 5 hours.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4508471&req=5

fig1: Diffractogram of crab shell; (a) before calcinations and (b) after calcinations at temperature 1000°C for 5 hours.

Mentions: Synthesis Ca10(PO4)6(OH)2 begins with a calcinations crab shell at 1000°C for 5 hours. The calcinations aim to eliminate the organic component in the shells of crabs and convert CaCO3 compound which is the dominant compound in the shells of crabs into CaO through the elimination of CO2 in gas form. Characterizing the calcinations results was conducted by X-ray, XRF, and FT-IR. The results can be seen from the diffraction pattern of the crab shells before and after calcinations at a temperature of 1000°C for 5 hours (Figure 1). In this figure can be observed changes in the diffraction pattern of crab shells, where the change in the diffraction pattern is due to the chemical change from mixture of CaCO3 with organic matter to pure CaO. The appearance of the sharper peaks in Figure 1 after calcinations (b) is a result of the crystallinity of the CaO.


Shynthesis and Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells (Portunus pelagicus) and Its Potency in Safeguard against to Dental Demineralizations.

Raya I, Mayasari E, Yahya A, Syahrul M, Latunra AI - Int J Biomater (2015)

Diffractogram of crab shell; (a) before calcinations and (b) after calcinations at temperature 1000°C for 5 hours.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4508471&req=5

fig1: Diffractogram of crab shell; (a) before calcinations and (b) after calcinations at temperature 1000°C for 5 hours.
Mentions: Synthesis Ca10(PO4)6(OH)2 begins with a calcinations crab shell at 1000°C for 5 hours. The calcinations aim to eliminate the organic component in the shells of crabs and convert CaCO3 compound which is the dominant compound in the shells of crabs into CaO through the elimination of CO2 in gas form. Characterizing the calcinations results was conducted by X-ray, XRF, and FT-IR. The results can be seen from the diffraction pattern of the crab shells before and after calcinations at a temperature of 1000°C for 5 hours (Figure 1). In this figure can be observed changes in the diffraction pattern of crab shells, where the change in the diffraction pattern is due to the chemical change from mixture of CaCO3 with organic matter to pure CaO. The appearance of the sharper peaks in Figure 1 after calcinations (b) is a result of the crystallinity of the CaO.

Bottom Line: Calcination was conducted to crab's shells of Portunus pelagicus at temperature of 1000°C for 5 hours.The results of calcination was reacted with (NH4)2HPO4, then dried at 110°C for 5 hours.The results showed that the rate of tooth demineralization in acetate buffer decreased significantly with the provision of hydroxyapatite into a solution where the addition of the magnitude of hydroxyapatite is greater decrease in the rate of tooth demineralization.

View Article: PubMed Central - PubMed

Affiliation: Chemistry Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia.

ABSTRACT
Crab's shells of Portunus pelagicus species were used as raw materials for synthesis of hydroxyapatite were used for protection against demineralization of teeth. Calcination was conducted to crab's shells of Portunus pelagicus at temperature of 1000°C for 5 hours. The results of calcination was reacted with (NH4)2HPO4, then dried at 110°C for 5 hours. Sintering was conducted to results of precipitated dried with temperature variations 400-1000°C for a hour each variation of temperature then characterized by X-ray diffractometer and FTIR in order to obtain the optimum formation temperature of hydroxyapatite is 800°C. The hydroxyapatite is then tested its effectiveness in protection against tooth demineralization using acetate buffer pH 5.0 with 1 M acetic acid concentration with the addition of hydroxyapatite and time variation of immersion. The results showed that the rate of tooth demineralization in acetate buffer decreased significantly with the provision of hydroxyapatite into a solution where the addition of the magnitude of hydroxyapatite is greater decrease in the rate of tooth demineralization.

No MeSH data available.


Related in: MedlinePlus