Limits...
Facile Fabrication of Micro-Nano Structured Triboelectric Nanogenerator with High Electric Output.

Zhang F, Li B, Zheng J, Xu C - Nanoscale Res Lett (2015)

Bottom Line: In this article, a new method is used to fabricate a high-performance triboelectric nanogenerator (TENG), which is convenient and cost-effective.The short-circuit current (I s) and open-circuit voltage (V o) of the TENG are up to 0.4343 mA and 236.8 V, respectively, and no significant change is observed by applying different frequencies of external impact forces from 1 to 10 Hz.Finally, we successfully drive an electrochromic device (ECD) directly using TENG within just 2 min for the first time.

View Article: PubMed Central - PubMed

Affiliation: CAS Key Lab of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.

ABSTRACT
In this article, a new method is used to fabricate a high-performance triboelectric nanogenerator (TENG), which is convenient and cost-effective. A polyformaldehyde (POM) film with novel structures is prepared through electrospinning and is combined with a polytetrafluoroethylene (PTFE) film to assemble micro-nano structured TENG. The short-circuit current (I s) and open-circuit voltage (V o) of the TENG are up to 0.4343 mA and 236.8 V, respectively, and no significant change is observed by applying different frequencies of external impact forces from 1 to 10 Hz. Finally, we successfully drive an electrochromic device (ECD) directly using TENG within just 2 min for the first time.

No MeSH data available.


Electric output performance characterization of TENG. a Circuit current and voltage under variable load resistances. bIs and Vo under different frequencies
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4508282&req=5

Fig4: Electric output performance characterization of TENG. a Circuit current and voltage under variable load resistances. bIs and Vo under different frequencies

Mentions: To further investigate the performance of TENG, we measured the electric output of TENG when it was connected to variable load resistances, ranging from 100 Ω to 100 MΩ, as shown in Fig. 4a. It is found that the current of the circuit decreases with the increasing of load resistance while the voltage has a reverse trend. The instantaneous power on the load will reach a maximum value of 57.18 mW at a load resistance of ~1 MΩ (see Additional file 1).Fig. 4


Facile Fabrication of Micro-Nano Structured Triboelectric Nanogenerator with High Electric Output.

Zhang F, Li B, Zheng J, Xu C - Nanoscale Res Lett (2015)

Electric output performance characterization of TENG. a Circuit current and voltage under variable load resistances. bIs and Vo under different frequencies
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4508282&req=5

Fig4: Electric output performance characterization of TENG. a Circuit current and voltage under variable load resistances. bIs and Vo under different frequencies
Mentions: To further investigate the performance of TENG, we measured the electric output of TENG when it was connected to variable load resistances, ranging from 100 Ω to 100 MΩ, as shown in Fig. 4a. It is found that the current of the circuit decreases with the increasing of load resistance while the voltage has a reverse trend. The instantaneous power on the load will reach a maximum value of 57.18 mW at a load resistance of ~1 MΩ (see Additional file 1).Fig. 4

Bottom Line: In this article, a new method is used to fabricate a high-performance triboelectric nanogenerator (TENG), which is convenient and cost-effective.The short-circuit current (I s) and open-circuit voltage (V o) of the TENG are up to 0.4343 mA and 236.8 V, respectively, and no significant change is observed by applying different frequencies of external impact forces from 1 to 10 Hz.Finally, we successfully drive an electrochromic device (ECD) directly using TENG within just 2 min for the first time.

View Article: PubMed Central - PubMed

Affiliation: CAS Key Lab of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.

ABSTRACT
In this article, a new method is used to fabricate a high-performance triboelectric nanogenerator (TENG), which is convenient and cost-effective. A polyformaldehyde (POM) film with novel structures is prepared through electrospinning and is combined with a polytetrafluoroethylene (PTFE) film to assemble micro-nano structured TENG. The short-circuit current (I s) and open-circuit voltage (V o) of the TENG are up to 0.4343 mA and 236.8 V, respectively, and no significant change is observed by applying different frequencies of external impact forces from 1 to 10 Hz. Finally, we successfully drive an electrochromic device (ECD) directly using TENG within just 2 min for the first time.

No MeSH data available.