Limits...
Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites.

Ramadan KS, Evoy S - PLoS ONE (2015)

Bottom Line: The effect of sputtering parameters on film properties was assessed.Films grown onto Al/0.32Mo however featured improved surface roughness.Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Computer Engineering, University of Alberta, 9211-116th St, Edmonton, Alberta, T6G 2V4, Canada.

ABSTRACT
Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m(-2) and 0.9±0.1 C m(-2), for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported.

No MeSH data available.


Related in: MedlinePlus

(Color Online) Sputtering pressure impact on AlN grown on AlMo.(a) shows the x-ray diffraction spectra of deposited AlN thin films at room temperature, a power of 300W and sputtering pressure of 1–4 mTorr (Sample name is included in the legend). (b) and (c) show the FWHM of the rocking curve and the AlN residual stress as a function of sputtering pressure, respectively. The line between the data points in (b) is meant to guide the eye.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4508053&req=5

pone.0133479.g004: (Color Online) Sputtering pressure impact on AlN grown on AlMo.(a) shows the x-ray diffraction spectra of deposited AlN thin films at room temperature, a power of 300W and sputtering pressure of 1–4 mTorr (Sample name is included in the legend). (b) and (c) show the FWHM of the rocking curve and the AlN residual stress as a function of sputtering pressure, respectively. The line between the data points in (b) is meant to guide the eye.

Mentions: Fig 4a shows typical XRD spectra for AlN deposited at 300W and pressures of 1, 2, 3 and 4 mTorr. The XRD spectra of samples M1, M2, M23 and M3 suggest that the (002) crystallographic texture increases with decrease of sputtering pressure. The FWHM of the rocking curve indeed decreased with decreasing sputtering pressure (Fig 4b), as previously reported [52, 56, 60]. This trend is explained by the higher mean free path of the aluminum atoms ejected from the target at lower sputtering pressures. Xu et al.[61] suggest that the (002) orientation will be increasingly preferred if this mean free path is greater than the distance between the target and the substrate. Aluminum atoms would indeed be reaching the substrates with higher energies, facilitating the formation of Al-N bond in the (002) direction [61].


Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites.

Ramadan KS, Evoy S - PLoS ONE (2015)

(Color Online) Sputtering pressure impact on AlN grown on AlMo.(a) shows the x-ray diffraction spectra of deposited AlN thin films at room temperature, a power of 300W and sputtering pressure of 1–4 mTorr (Sample name is included in the legend). (b) and (c) show the FWHM of the rocking curve and the AlN residual stress as a function of sputtering pressure, respectively. The line between the data points in (b) is meant to guide the eye.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4508053&req=5

pone.0133479.g004: (Color Online) Sputtering pressure impact on AlN grown on AlMo.(a) shows the x-ray diffraction spectra of deposited AlN thin films at room temperature, a power of 300W and sputtering pressure of 1–4 mTorr (Sample name is included in the legend). (b) and (c) show the FWHM of the rocking curve and the AlN residual stress as a function of sputtering pressure, respectively. The line between the data points in (b) is meant to guide the eye.
Mentions: Fig 4a shows typical XRD spectra for AlN deposited at 300W and pressures of 1, 2, 3 and 4 mTorr. The XRD spectra of samples M1, M2, M23 and M3 suggest that the (002) crystallographic texture increases with decrease of sputtering pressure. The FWHM of the rocking curve indeed decreased with decreasing sputtering pressure (Fig 4b), as previously reported [52, 56, 60]. This trend is explained by the higher mean free path of the aluminum atoms ejected from the target at lower sputtering pressures. Xu et al.[61] suggest that the (002) orientation will be increasingly preferred if this mean free path is greater than the distance between the target and the substrate. Aluminum atoms would indeed be reaching the substrates with higher energies, facilitating the formation of Al-N bond in the (002) direction [61].

Bottom Line: The effect of sputtering parameters on film properties was assessed.Films grown onto Al/0.32Mo however featured improved surface roughness.Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Computer Engineering, University of Alberta, 9211-116th St, Edmonton, Alberta, T6G 2V4, Canada.

ABSTRACT
Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m(-2) and 0.9±0.1 C m(-2), for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported.

No MeSH data available.


Related in: MedlinePlus