Limits...
Double Virus Vector Infection to the Prefrontal Network of the Macaque Brain.

Oguchi M, Okajima M, Tanaka S, Koizumi M, Kikusui T, Ichihara N, Kato S, Kobayashi K, Sakagami M - PLoS ONE (2015)

Bottom Line: The retrograde vector incorporates the sequence which encodes Cre recombinase and the local vector incorporates the "Cre-On" FLEX double-floxed sequence in which a reporter protein (mCherry) was encoded. mCherry thus came to be expressed only in doubly infected projection neurons with these vectors.We applied this method to two macaque monkeys and targeted two different pathways in the prefrontal network: The pathway from the lateral prefrontal cortex to the caudate nucleus and the pathway from the lateral prefrontal cortex to the frontal eye field.As a result, mCherry-positive cells were observed in the lateral prefrontal cortex in all of the four injected hemispheres, indicating that the double virus vector transfection is workable in the prefrontal network of the macaque brain.

View Article: PubMed Central - PubMed

Affiliation: Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan.

ABSTRACT
To precisely understand how higher cognitive functions are implemented in the prefrontal network of the brain, optogenetic and pharmacogenetic methods to manipulate the signal transmission of a specific neural pathway are required. The application of these methods, however, has been mostly restricted to animals other than the primate, which is the best animal model to investigate higher cognitive functions. In this study, we used a double viral vector infection method in the prefrontal network of the macaque brain. This enabled us to express specific constructs into specific neurons that constitute a target pathway without use of germline genetic manipulation. The double-infection technique utilizes two different virus vectors in two monosynaptically connected areas. One is a vector which can locally infect cell bodies of projection neurons (local vector) and the other can retrogradely infect from axon terminals of the same projection neurons (retrograde vector). The retrograde vector incorporates the sequence which encodes Cre recombinase and the local vector incorporates the "Cre-On" FLEX double-floxed sequence in which a reporter protein (mCherry) was encoded. mCherry thus came to be expressed only in doubly infected projection neurons with these vectors. We applied this method to two macaque monkeys and targeted two different pathways in the prefrontal network: The pathway from the lateral prefrontal cortex to the caudate nucleus and the pathway from the lateral prefrontal cortex to the frontal eye field. As a result, mCherry-positive cells were observed in the lateral prefrontal cortex in all of the four injected hemispheres, indicating that the double virus vector transfection is workable in the prefrontal network of the macaque brain.

No MeSH data available.


Related in: MedlinePlus

Anatomical location of insertion sites for the two monkeys.Distribution of insertion sites in the LPFC-Cd pathway (A), and in the LPFC-FEF pathway (B). The yellow circles represent insertion sites of local vector (AAV5 for the both monkeys). The blue circle represents insertion sites of retrograde vectors (AAV9 for Monkey TA; HiRet for Monkey TO). Three different depths along each injection track in the Cd were indicated by the blue circles on the T1 weighted anatomical images (A).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4507872&req=5

pone.0132825.g003: Anatomical location of insertion sites for the two monkeys.Distribution of insertion sites in the LPFC-Cd pathway (A), and in the LPFC-FEF pathway (B). The yellow circles represent insertion sites of local vector (AAV5 for the both monkeys). The blue circle represents insertion sites of retrograde vectors (AAV9 for Monkey TA; HiRet for Monkey TO). Three different depths along each injection track in the Cd were indicated by the blue circles on the T1 weighted anatomical images (A).

Mentions: For Monkey TA (Fig 3A, left), we injected AAV9 along 7 tracks in the left Cd (the width of the injection area was 7 mm along the anterior-posterior (AP) direction) and AAV5 along 7 tracks in the ipsilateral LPFC (5 mm width along the AP direction). For Monkey TO (Fig 3A, right), we injected HiRet along 7 tracks in the right Cd (5 mm width along the AP direction) and AAV5 along 12 tracks in the ipsilateral LPFC (6 mm width along the AP direction).


Double Virus Vector Infection to the Prefrontal Network of the Macaque Brain.

Oguchi M, Okajima M, Tanaka S, Koizumi M, Kikusui T, Ichihara N, Kato S, Kobayashi K, Sakagami M - PLoS ONE (2015)

Anatomical location of insertion sites for the two monkeys.Distribution of insertion sites in the LPFC-Cd pathway (A), and in the LPFC-FEF pathway (B). The yellow circles represent insertion sites of local vector (AAV5 for the both monkeys). The blue circle represents insertion sites of retrograde vectors (AAV9 for Monkey TA; HiRet for Monkey TO). Three different depths along each injection track in the Cd were indicated by the blue circles on the T1 weighted anatomical images (A).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4507872&req=5

pone.0132825.g003: Anatomical location of insertion sites for the two monkeys.Distribution of insertion sites in the LPFC-Cd pathway (A), and in the LPFC-FEF pathway (B). The yellow circles represent insertion sites of local vector (AAV5 for the both monkeys). The blue circle represents insertion sites of retrograde vectors (AAV9 for Monkey TA; HiRet for Monkey TO). Three different depths along each injection track in the Cd were indicated by the blue circles on the T1 weighted anatomical images (A).
Mentions: For Monkey TA (Fig 3A, left), we injected AAV9 along 7 tracks in the left Cd (the width of the injection area was 7 mm along the anterior-posterior (AP) direction) and AAV5 along 7 tracks in the ipsilateral LPFC (5 mm width along the AP direction). For Monkey TO (Fig 3A, right), we injected HiRet along 7 tracks in the right Cd (5 mm width along the AP direction) and AAV5 along 12 tracks in the ipsilateral LPFC (6 mm width along the AP direction).

Bottom Line: The retrograde vector incorporates the sequence which encodes Cre recombinase and the local vector incorporates the "Cre-On" FLEX double-floxed sequence in which a reporter protein (mCherry) was encoded. mCherry thus came to be expressed only in doubly infected projection neurons with these vectors.We applied this method to two macaque monkeys and targeted two different pathways in the prefrontal network: The pathway from the lateral prefrontal cortex to the caudate nucleus and the pathway from the lateral prefrontal cortex to the frontal eye field.As a result, mCherry-positive cells were observed in the lateral prefrontal cortex in all of the four injected hemispheres, indicating that the double virus vector transfection is workable in the prefrontal network of the macaque brain.

View Article: PubMed Central - PubMed

Affiliation: Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan.

ABSTRACT
To precisely understand how higher cognitive functions are implemented in the prefrontal network of the brain, optogenetic and pharmacogenetic methods to manipulate the signal transmission of a specific neural pathway are required. The application of these methods, however, has been mostly restricted to animals other than the primate, which is the best animal model to investigate higher cognitive functions. In this study, we used a double viral vector infection method in the prefrontal network of the macaque brain. This enabled us to express specific constructs into specific neurons that constitute a target pathway without use of germline genetic manipulation. The double-infection technique utilizes two different virus vectors in two monosynaptically connected areas. One is a vector which can locally infect cell bodies of projection neurons (local vector) and the other can retrogradely infect from axon terminals of the same projection neurons (retrograde vector). The retrograde vector incorporates the sequence which encodes Cre recombinase and the local vector incorporates the "Cre-On" FLEX double-floxed sequence in which a reporter protein (mCherry) was encoded. mCherry thus came to be expressed only in doubly infected projection neurons with these vectors. We applied this method to two macaque monkeys and targeted two different pathways in the prefrontal network: The pathway from the lateral prefrontal cortex to the caudate nucleus and the pathway from the lateral prefrontal cortex to the frontal eye field. As a result, mCherry-positive cells were observed in the lateral prefrontal cortex in all of the four injected hemispheres, indicating that the double virus vector transfection is workable in the prefrontal network of the macaque brain.

No MeSH data available.


Related in: MedlinePlus