Limits...
Double Virus Vector Infection to the Prefrontal Network of the Macaque Brain.

Oguchi M, Okajima M, Tanaka S, Koizumi M, Kikusui T, Ichihara N, Kato S, Kobayashi K, Sakagami M - PLoS ONE (2015)

Bottom Line: The retrograde vector incorporates the sequence which encodes Cre recombinase and the local vector incorporates the "Cre-On" FLEX double-floxed sequence in which a reporter protein (mCherry) was encoded. mCherry thus came to be expressed only in doubly infected projection neurons with these vectors.We applied this method to two macaque monkeys and targeted two different pathways in the prefrontal network: The pathway from the lateral prefrontal cortex to the caudate nucleus and the pathway from the lateral prefrontal cortex to the frontal eye field.As a result, mCherry-positive cells were observed in the lateral prefrontal cortex in all of the four injected hemispheres, indicating that the double virus vector transfection is workable in the prefrontal network of the macaque brain.

View Article: PubMed Central - PubMed

Affiliation: Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan.

ABSTRACT
To precisely understand how higher cognitive functions are implemented in the prefrontal network of the brain, optogenetic and pharmacogenetic methods to manipulate the signal transmission of a specific neural pathway are required. The application of these methods, however, has been mostly restricted to animals other than the primate, which is the best animal model to investigate higher cognitive functions. In this study, we used a double viral vector infection method in the prefrontal network of the macaque brain. This enabled us to express specific constructs into specific neurons that constitute a target pathway without use of germline genetic manipulation. The double-infection technique utilizes two different virus vectors in two monosynaptically connected areas. One is a vector which can locally infect cell bodies of projection neurons (local vector) and the other can retrogradely infect from axon terminals of the same projection neurons (retrograde vector). The retrograde vector incorporates the sequence which encodes Cre recombinase and the local vector incorporates the "Cre-On" FLEX double-floxed sequence in which a reporter protein (mCherry) was encoded. mCherry thus came to be expressed only in doubly infected projection neurons with these vectors. We applied this method to two macaque monkeys and targeted two different pathways in the prefrontal network: The pathway from the lateral prefrontal cortex to the caudate nucleus and the pathway from the lateral prefrontal cortex to the frontal eye field. As a result, mCherry-positive cells were observed in the lateral prefrontal cortex in all of the four injected hemispheres, indicating that the double virus vector transfection is workable in the prefrontal network of the macaque brain.

No MeSH data available.


Related in: MedlinePlus

Target pathway and injected local and retrograde virus vectors.AAV5 was injected into the bilateral LPFC of both monkeys. AAV9 was injected into the left Cd and the right FEF of Monkey TA. HiRet was injected into the right Cd and the left FEF of Monkey TO.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4507872&req=5

pone.0132825.g002: Target pathway and injected local and retrograde virus vectors.AAV5 was injected into the bilateral LPFC of both monkeys. AAV9 was injected into the left Cd and the right FEF of Monkey TA. HiRet was injected into the right Cd and the left FEF of Monkey TO.

Mentions: The local vector was injected into the bilateral LPFC, and the retrograde vector was injected into either the Cd or the FEF for each hemisphere. AAV9 was injected into the left Cd and the right FEF of Monkey TA. HiRet was injected into the right Cd and the left FEF of Monkey TO (Fig 2). The LPFC is highly heterogeneous and contains various other projection neurons each of which connect with different brain areas. By using this double-infection technique, we can cause the expression of the target constructs only in the specific types of projection neurons in the LPFC (i.e., Cd-projection neurons and FEF-projection neurons).


Double Virus Vector Infection to the Prefrontal Network of the Macaque Brain.

Oguchi M, Okajima M, Tanaka S, Koizumi M, Kikusui T, Ichihara N, Kato S, Kobayashi K, Sakagami M - PLoS ONE (2015)

Target pathway and injected local and retrograde virus vectors.AAV5 was injected into the bilateral LPFC of both monkeys. AAV9 was injected into the left Cd and the right FEF of Monkey TA. HiRet was injected into the right Cd and the left FEF of Monkey TO.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4507872&req=5

pone.0132825.g002: Target pathway and injected local and retrograde virus vectors.AAV5 was injected into the bilateral LPFC of both monkeys. AAV9 was injected into the left Cd and the right FEF of Monkey TA. HiRet was injected into the right Cd and the left FEF of Monkey TO.
Mentions: The local vector was injected into the bilateral LPFC, and the retrograde vector was injected into either the Cd or the FEF for each hemisphere. AAV9 was injected into the left Cd and the right FEF of Monkey TA. HiRet was injected into the right Cd and the left FEF of Monkey TO (Fig 2). The LPFC is highly heterogeneous and contains various other projection neurons each of which connect with different brain areas. By using this double-infection technique, we can cause the expression of the target constructs only in the specific types of projection neurons in the LPFC (i.e., Cd-projection neurons and FEF-projection neurons).

Bottom Line: The retrograde vector incorporates the sequence which encodes Cre recombinase and the local vector incorporates the "Cre-On" FLEX double-floxed sequence in which a reporter protein (mCherry) was encoded. mCherry thus came to be expressed only in doubly infected projection neurons with these vectors.We applied this method to two macaque monkeys and targeted two different pathways in the prefrontal network: The pathway from the lateral prefrontal cortex to the caudate nucleus and the pathway from the lateral prefrontal cortex to the frontal eye field.As a result, mCherry-positive cells were observed in the lateral prefrontal cortex in all of the four injected hemispheres, indicating that the double virus vector transfection is workable in the prefrontal network of the macaque brain.

View Article: PubMed Central - PubMed

Affiliation: Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan.

ABSTRACT
To precisely understand how higher cognitive functions are implemented in the prefrontal network of the brain, optogenetic and pharmacogenetic methods to manipulate the signal transmission of a specific neural pathway are required. The application of these methods, however, has been mostly restricted to animals other than the primate, which is the best animal model to investigate higher cognitive functions. In this study, we used a double viral vector infection method in the prefrontal network of the macaque brain. This enabled us to express specific constructs into specific neurons that constitute a target pathway without use of germline genetic manipulation. The double-infection technique utilizes two different virus vectors in two monosynaptically connected areas. One is a vector which can locally infect cell bodies of projection neurons (local vector) and the other can retrogradely infect from axon terminals of the same projection neurons (retrograde vector). The retrograde vector incorporates the sequence which encodes Cre recombinase and the local vector incorporates the "Cre-On" FLEX double-floxed sequence in which a reporter protein (mCherry) was encoded. mCherry thus came to be expressed only in doubly infected projection neurons with these vectors. We applied this method to two macaque monkeys and targeted two different pathways in the prefrontal network: The pathway from the lateral prefrontal cortex to the caudate nucleus and the pathway from the lateral prefrontal cortex to the frontal eye field. As a result, mCherry-positive cells were observed in the lateral prefrontal cortex in all of the four injected hemispheres, indicating that the double virus vector transfection is workable in the prefrontal network of the macaque brain.

No MeSH data available.


Related in: MedlinePlus