Limits...
Microfabrication and integration of a sol-gel PZT folded spring energy harvester.

Lueke J, Badr A, Lou E, Moussa WA - Sensors (Basel) (2015)

Bottom Line: A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit.The efficiency and charging current must be balanced to achieve a high output and a reasonable output current.The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, University of Alberta, University of Alberta, Edmonton, AB T6G 2G8, Canada. lueke@ualberta.ca.

ABSTRACT
This paper presents the methodology and challenges experienced in the microfabrication, packaging, and integration of a fixed-fixed folded spring piezoelectric energy harvester. A variety of challenges were overcome in the fabrication of the energy harvesters, such as the diagnosis and rectification of sol-gel PZT film quality and adhesion issues. A packaging and integration methodology was developed to allow for the characterizing the harvesters under a base vibration. The conditioning circuitry developed allowed for a complete energy harvesting system, consisting a harvester, a voltage doubler, a voltage regulator and a NiMH battery. A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit. It was found that the maximum efficiency does not correlate to the maximum charging current supplied to the battery. The efficiency and charging current must be balanced to achieve a high output and a reasonable output current. The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing.

No MeSH data available.


Related in: MedlinePlus

Examples of poor quality PZT film patterned by the lift off procedure. Circled areas denote short circuits and voided film.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4507646&req=5

sensors-15-12218-f004: Examples of poor quality PZT film patterned by the lift off procedure. Circled areas denote short circuits and voided film.

Mentions: During the lift-off, it was found that the semi-solid PZT film would locally dissolve from the wafer when exposed to acetone. This caused a net volume loss, which ultimately led to a contraction of the PZT film during annealing, causing the voids and cracks that are seen in Figure 4.


Microfabrication and integration of a sol-gel PZT folded spring energy harvester.

Lueke J, Badr A, Lou E, Moussa WA - Sensors (Basel) (2015)

Examples of poor quality PZT film patterned by the lift off procedure. Circled areas denote short circuits and voided film.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4507646&req=5

sensors-15-12218-f004: Examples of poor quality PZT film patterned by the lift off procedure. Circled areas denote short circuits and voided film.
Mentions: During the lift-off, it was found that the semi-solid PZT film would locally dissolve from the wafer when exposed to acetone. This caused a net volume loss, which ultimately led to a contraction of the PZT film during annealing, causing the voids and cracks that are seen in Figure 4.

Bottom Line: A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit.The efficiency and charging current must be balanced to achieve a high output and a reasonable output current.The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, University of Alberta, University of Alberta, Edmonton, AB T6G 2G8, Canada. lueke@ualberta.ca.

ABSTRACT
This paper presents the methodology and challenges experienced in the microfabrication, packaging, and integration of a fixed-fixed folded spring piezoelectric energy harvester. A variety of challenges were overcome in the fabrication of the energy harvesters, such as the diagnosis and rectification of sol-gel PZT film quality and adhesion issues. A packaging and integration methodology was developed to allow for the characterizing the harvesters under a base vibration. The conditioning circuitry developed allowed for a complete energy harvesting system, consisting a harvester, a voltage doubler, a voltage regulator and a NiMH battery. A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit. It was found that the maximum efficiency does not correlate to the maximum charging current supplied to the battery. The efficiency and charging current must be balanced to achieve a high output and a reasonable output current. The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing.

No MeSH data available.


Related in: MedlinePlus