Limits...
Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.

Ricigliano V, Chitaman J, Tong J, Adamatzky A, Howarth DG - Front Microbiol (2015)

Bottom Line: The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior.In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity.We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, St. John's University New York, NY, USA.

ABSTRACT
Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere.

No MeSH data available.


Related in: MedlinePlus

The electrophysiological response toV. officinalishairy root culture in a simple plasmodium circuit. (A) Schematic representation of the experimental circuit for measuring P. polycephalum surface electrical activity. Plasmodium was inoculated onto agar blobs situated on aluminum electrodes. Completed circuits with a single protoplasmic tube spanning both agar blobs were used for electrical activity recording. α, aluminum electrode; β, agar blob; γ, plasmodium-colonized oat flake; δ, protoplasmic tube. (B) Photograph of an intact experimental circuit. A solitary protoplasmic tube connects two agar blobs situated on recording electrodes. (C) Exemplary patterns of electrical oscillations of undisturbed plasmodium. (D) Exemplary oscillation patterns of electrical activity after the introduction of VoHR5 hairy root culture biomass.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4504241&req=5

Figure 6: The electrophysiological response toV. officinalishairy root culture in a simple plasmodium circuit. (A) Schematic representation of the experimental circuit for measuring P. polycephalum surface electrical activity. Plasmodium was inoculated onto agar blobs situated on aluminum electrodes. Completed circuits with a single protoplasmic tube spanning both agar blobs were used for electrical activity recording. α, aluminum electrode; β, agar blob; γ, plasmodium-colonized oat flake; δ, protoplasmic tube. (B) Photograph of an intact experimental circuit. A solitary protoplasmic tube connects two agar blobs situated on recording electrodes. (C) Exemplary patterns of electrical oscillations of undisturbed plasmodium. (D) Exemplary oscillation patterns of electrical activity after the introduction of VoHR5 hairy root culture biomass.

Mentions: The electrophysiological response to root culture biomass was measured by recording patterns of the plasmodium's electrical activity. Undisturbed, P. polycephalum exhibits mostly regular patterns of oscillations of its surface electrical potential. These oscillations most likely regulate peristaltic movements of protoplasmic tubes for distribution of nutrients and spatial navigation (Heilbrunn and Daugherty, 1939; Tero et al., 2008). Calcium flux through ion channels stimulates biochemical oscillators responsible for contractile dynamics (Smith and Saldana, 1992). The slime mold's surface electrical potential oscillates with a frequency that has been correlated with shuttle streaming of cytoplasm (Smith, 1994; Yoshiyama et al., 2010). We defined alteration of basal oscillatory patterns by unique changes in frequencies of plasmodium electrical activity. Figure 6A shows a schematic of the experimental setup where a simple plasmodium circuit is completed by a single protoplasmic tube spanning two electrodes. A photograph of an intact circuit is shown in Figure 6B.


Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.

Ricigliano V, Chitaman J, Tong J, Adamatzky A, Howarth DG - Front Microbiol (2015)

The electrophysiological response toV. officinalishairy root culture in a simple plasmodium circuit. (A) Schematic representation of the experimental circuit for measuring P. polycephalum surface electrical activity. Plasmodium was inoculated onto agar blobs situated on aluminum electrodes. Completed circuits with a single protoplasmic tube spanning both agar blobs were used for electrical activity recording. α, aluminum electrode; β, agar blob; γ, plasmodium-colonized oat flake; δ, protoplasmic tube. (B) Photograph of an intact experimental circuit. A solitary protoplasmic tube connects two agar blobs situated on recording electrodes. (C) Exemplary patterns of electrical oscillations of undisturbed plasmodium. (D) Exemplary oscillation patterns of electrical activity after the introduction of VoHR5 hairy root culture biomass.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4504241&req=5

Figure 6: The electrophysiological response toV. officinalishairy root culture in a simple plasmodium circuit. (A) Schematic representation of the experimental circuit for measuring P. polycephalum surface electrical activity. Plasmodium was inoculated onto agar blobs situated on aluminum electrodes. Completed circuits with a single protoplasmic tube spanning both agar blobs were used for electrical activity recording. α, aluminum electrode; β, agar blob; γ, plasmodium-colonized oat flake; δ, protoplasmic tube. (B) Photograph of an intact experimental circuit. A solitary protoplasmic tube connects two agar blobs situated on recording electrodes. (C) Exemplary patterns of electrical oscillations of undisturbed plasmodium. (D) Exemplary oscillation patterns of electrical activity after the introduction of VoHR5 hairy root culture biomass.
Mentions: The electrophysiological response to root culture biomass was measured by recording patterns of the plasmodium's electrical activity. Undisturbed, P. polycephalum exhibits mostly regular patterns of oscillations of its surface electrical potential. These oscillations most likely regulate peristaltic movements of protoplasmic tubes for distribution of nutrients and spatial navigation (Heilbrunn and Daugherty, 1939; Tero et al., 2008). Calcium flux through ion channels stimulates biochemical oscillators responsible for contractile dynamics (Smith and Saldana, 1992). The slime mold's surface electrical potential oscillates with a frequency that has been correlated with shuttle streaming of cytoplasm (Smith, 1994; Yoshiyama et al., 2010). We defined alteration of basal oscillatory patterns by unique changes in frequencies of plasmodium electrical activity. Figure 6A shows a schematic of the experimental setup where a simple plasmodium circuit is completed by a single protoplasmic tube spanning two electrodes. A photograph of an intact circuit is shown in Figure 6B.

Bottom Line: The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior.In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity.We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, St. John's University New York, NY, USA.

ABSTRACT
Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere.

No MeSH data available.


Related in: MedlinePlus