Limits...
PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana.

Zhuang L, Yuan X, Chen Y, Xu B, Yang Z, Huang B - PLoS ONE (2015)

Bottom Line: Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type.Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes.Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits.

View Article: PubMed Central - PubMed

Affiliation: College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.

ABSTRACT
Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or 'dwarfism', both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits.

No MeSH data available.


Related in: MedlinePlus

Detection of ROS in WT and transgenic Arabidopsis plants.(A) NBT staining for superoxide in WT and transgenic Arabidopsis under normal condition and (B) freezing stress. (C) DAB staining for hydrogen peroxide in WT and transgenic Arabidopsis under normal condition and (D) freezing stress.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4503346&req=5

pone.0132928.g007: Detection of ROS in WT and transgenic Arabidopsis plants.(A) NBT staining for superoxide in WT and transgenic Arabidopsis under normal condition and (B) freezing stress. (C) DAB staining for hydrogen peroxide in WT and transgenic Arabidopsis under normal condition and (D) freezing stress.

Mentions: To identify if transgenic plants accumulated less H2O2 and O2.- under freezing stress at -20°C, leaves were stained with DAB and NBT. Leaves of the WT showed a dark blue color while those of all transgenic plants were stained light blue (Fig 7A and 7B), which indicated less accumulation of O2.- in transgenic plants compare to the WT. Similarly, less H2O2 production was found in transgenic plants than in the WT, as shown by lesser intensity of brown staining of transgenic leaves (Fig 7C and 7D).


PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana.

Zhuang L, Yuan X, Chen Y, Xu B, Yang Z, Huang B - PLoS ONE (2015)

Detection of ROS in WT and transgenic Arabidopsis plants.(A) NBT staining for superoxide in WT and transgenic Arabidopsis under normal condition and (B) freezing stress. (C) DAB staining for hydrogen peroxide in WT and transgenic Arabidopsis under normal condition and (D) freezing stress.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4503346&req=5

pone.0132928.g007: Detection of ROS in WT and transgenic Arabidopsis plants.(A) NBT staining for superoxide in WT and transgenic Arabidopsis under normal condition and (B) freezing stress. (C) DAB staining for hydrogen peroxide in WT and transgenic Arabidopsis under normal condition and (D) freezing stress.
Mentions: To identify if transgenic plants accumulated less H2O2 and O2.- under freezing stress at -20°C, leaves were stained with DAB and NBT. Leaves of the WT showed a dark blue color while those of all transgenic plants were stained light blue (Fig 7A and 7B), which indicated less accumulation of O2.- in transgenic plants compare to the WT. Similarly, less H2O2 production was found in transgenic plants than in the WT, as shown by lesser intensity of brown staining of transgenic leaves (Fig 7C and 7D).

Bottom Line: Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type.Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes.Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits.

View Article: PubMed Central - PubMed

Affiliation: College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.

ABSTRACT
Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or 'dwarfism', both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits.

No MeSH data available.


Related in: MedlinePlus