Limits...
Systemic and Ocular Long Pentraxin 3 in Patients with Age-Related Macular Degeneration.

Juel HB, Faber C, Munthe-Fog L, Bastrup-Birk S, Reese-Petersen AL, Falk MK, Singh A, Sørensen TL, Garred P, Nissen MH - PLoS ONE (2015)

Bottom Line: Plasma levels of PTX3 were generally low and did not significantly differ between patients and controls (P=0.307).The gene expression of PTX3 increased in RPE/choroid with age (P=0.0098 macular; P=0.003 extramacular), but did not differ between aged controls and AMD patients.These findings indicate that PTX3 expressed in the eye cannot be detected systemically and systemic PTX3 may have little or no impact on disease progression, but our findings do not exclude that locally produced PTX3 produced in the posterior segment of the eye may be part of the AMD immunopathogenesis.

View Article: PubMed Central - PubMed

Affiliation: Eye Research Unit, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.

ABSTRACT
Age-related macular degeneration (AMD) has been associated with both systemic and ocular alterations of the immune system. In particular dysfunction of complement factor H (CFH), a soluble regulator of the alternative pathway of the complement system, has been implicated in AMD pathogenesis. One of the ligands for CFH is long pentraxin 3 (PTX3), which is produced locally in the retinal pigment epithelium (RPE). To test the hypothesis that PTX3 is relevant to retinal immunohomeostasis and may be associated with AMD pathogenesis, we measured plasma PTX3 protein concentration and analyzed the RPE/choroid PTX3 gene expression in patients with AMD. To measure the ability of RPE cells to secrete PTX3 in vitro, polarized ARPE-19 cells were treated with activated T cells or cytokines (interferon (IFN)-gamma and/or tumor necrosis factor (TNF)-alpha) from the basolateral side; then PTX3 protein concentration in supernatants and PTX3 gene expression in tissue lysates were quantified. Plasma levels of PTX3 were generally low and did not significantly differ between patients and controls (P=0.307). No statistically significant difference was observed between dry and exudative AMD nor was there any correlation with hsCRP or CFH genotype. The gene expression of PTX3 increased in RPE/choroid with age (P=0.0098 macular; P=0.003 extramacular), but did not differ between aged controls and AMD patients. In vitro, ARPE-19 cells increased expression of the PTX3 gene as well PTX3 apical secretions after stimulation with TNF-alpha or activated T cells (P<0.01). These findings indicate that PTX3 expressed in the eye cannot be detected systemically and systemic PTX3 may have little or no impact on disease progression, but our findings do not exclude that locally produced PTX3 produced in the posterior segment of the eye may be part of the AMD immunopathogenesis.

No MeSH data available.


Related in: MedlinePlus

PTX3 secretion from ARPE-19 cells is primarily increased in the apical direction following basolateral inflammatory treatment.Pigmented monolayers of ARPE-19 cells grown on membrane inserts were exposed to CD3/CD28-activated human T cells (co-T) or recombinant cytokines basolaterally. Media was collected from apical and basolateral compartments, and PTX3 was quantified using ELISA. *, P<0.05; **, P<0.01 in repeated measures one-way ANOVA with Dunnett’s multiple comparison. Bars represent mean values from seven independent setups, error bars represent standard error of the mean.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4503310&req=5

pone.0132800.g004: PTX3 secretion from ARPE-19 cells is primarily increased in the apical direction following basolateral inflammatory treatment.Pigmented monolayers of ARPE-19 cells grown on membrane inserts were exposed to CD3/CD28-activated human T cells (co-T) or recombinant cytokines basolaterally. Media was collected from apical and basolateral compartments, and PTX3 was quantified using ELISA. *, P<0.05; **, P<0.01 in repeated measures one-way ANOVA with Dunnett’s multiple comparison. Bars represent mean values from seven independent setups, error bars represent standard error of the mean.

Mentions: In an effort to further understand factors influencing PTX3 expression from RPE cells, we treated polarized ARPE-19 monolayers with various inflammatory stressors in a transwell system. In a small gene expression screen using microarrays (Fig 3), ARPE-19 were exposed to activated T cells apically or basolaterally. This resulted in significantly increased gene expression of PTX3 regardless of the direction of stimulation (n = 6; P<0.01). ARPE-19 were also basolaterally exposed to IFNγ and TNFα either alone or in combination (n = 2), but no significant difference in PTX3 gene expression was noted. To investigate if the observed increase in gene expression translated into increased protein secretion, we treated polarized ARPE-19 monolayers with the same inflammatory stressors from the basolateral compartments (n = 7). We found increased secretion of PTX3 in the apical direction following co-culture with activated T cells or treatment with TNFα with or without IFNγ (P<0.01). The basolateral secretion of PTX3 was also increased after stimulation, but to a lower level and only significantly after treatment with TNFα (Fig 4).


Systemic and Ocular Long Pentraxin 3 in Patients with Age-Related Macular Degeneration.

Juel HB, Faber C, Munthe-Fog L, Bastrup-Birk S, Reese-Petersen AL, Falk MK, Singh A, Sørensen TL, Garred P, Nissen MH - PLoS ONE (2015)

PTX3 secretion from ARPE-19 cells is primarily increased in the apical direction following basolateral inflammatory treatment.Pigmented monolayers of ARPE-19 cells grown on membrane inserts were exposed to CD3/CD28-activated human T cells (co-T) or recombinant cytokines basolaterally. Media was collected from apical and basolateral compartments, and PTX3 was quantified using ELISA. *, P<0.05; **, P<0.01 in repeated measures one-way ANOVA with Dunnett’s multiple comparison. Bars represent mean values from seven independent setups, error bars represent standard error of the mean.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4503310&req=5

pone.0132800.g004: PTX3 secretion from ARPE-19 cells is primarily increased in the apical direction following basolateral inflammatory treatment.Pigmented monolayers of ARPE-19 cells grown on membrane inserts were exposed to CD3/CD28-activated human T cells (co-T) or recombinant cytokines basolaterally. Media was collected from apical and basolateral compartments, and PTX3 was quantified using ELISA. *, P<0.05; **, P<0.01 in repeated measures one-way ANOVA with Dunnett’s multiple comparison. Bars represent mean values from seven independent setups, error bars represent standard error of the mean.
Mentions: In an effort to further understand factors influencing PTX3 expression from RPE cells, we treated polarized ARPE-19 monolayers with various inflammatory stressors in a transwell system. In a small gene expression screen using microarrays (Fig 3), ARPE-19 were exposed to activated T cells apically or basolaterally. This resulted in significantly increased gene expression of PTX3 regardless of the direction of stimulation (n = 6; P<0.01). ARPE-19 were also basolaterally exposed to IFNγ and TNFα either alone or in combination (n = 2), but no significant difference in PTX3 gene expression was noted. To investigate if the observed increase in gene expression translated into increased protein secretion, we treated polarized ARPE-19 monolayers with the same inflammatory stressors from the basolateral compartments (n = 7). We found increased secretion of PTX3 in the apical direction following co-culture with activated T cells or treatment with TNFα with or without IFNγ (P<0.01). The basolateral secretion of PTX3 was also increased after stimulation, but to a lower level and only significantly after treatment with TNFα (Fig 4).

Bottom Line: Plasma levels of PTX3 were generally low and did not significantly differ between patients and controls (P=0.307).The gene expression of PTX3 increased in RPE/choroid with age (P=0.0098 macular; P=0.003 extramacular), but did not differ between aged controls and AMD patients.These findings indicate that PTX3 expressed in the eye cannot be detected systemically and systemic PTX3 may have little or no impact on disease progression, but our findings do not exclude that locally produced PTX3 produced in the posterior segment of the eye may be part of the AMD immunopathogenesis.

View Article: PubMed Central - PubMed

Affiliation: Eye Research Unit, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.

ABSTRACT
Age-related macular degeneration (AMD) has been associated with both systemic and ocular alterations of the immune system. In particular dysfunction of complement factor H (CFH), a soluble regulator of the alternative pathway of the complement system, has been implicated in AMD pathogenesis. One of the ligands for CFH is long pentraxin 3 (PTX3), which is produced locally in the retinal pigment epithelium (RPE). To test the hypothesis that PTX3 is relevant to retinal immunohomeostasis and may be associated with AMD pathogenesis, we measured plasma PTX3 protein concentration and analyzed the RPE/choroid PTX3 gene expression in patients with AMD. To measure the ability of RPE cells to secrete PTX3 in vitro, polarized ARPE-19 cells were treated with activated T cells or cytokines (interferon (IFN)-gamma and/or tumor necrosis factor (TNF)-alpha) from the basolateral side; then PTX3 protein concentration in supernatants and PTX3 gene expression in tissue lysates were quantified. Plasma levels of PTX3 were generally low and did not significantly differ between patients and controls (P=0.307). No statistically significant difference was observed between dry and exudative AMD nor was there any correlation with hsCRP or CFH genotype. The gene expression of PTX3 increased in RPE/choroid with age (P=0.0098 macular; P=0.003 extramacular), but did not differ between aged controls and AMD patients. In vitro, ARPE-19 cells increased expression of the PTX3 gene as well PTX3 apical secretions after stimulation with TNF-alpha or activated T cells (P<0.01). These findings indicate that PTX3 expressed in the eye cannot be detected systemically and systemic PTX3 may have little or no impact on disease progression, but our findings do not exclude that locally produced PTX3 produced in the posterior segment of the eye may be part of the AMD immunopathogenesis.

No MeSH data available.


Related in: MedlinePlus