Limits...
Effects of Antrodia camphorata extracts on anti-oxidation, anti-mutagenesis and protection of DNA against hydroxyl radical damage.

Hsieh YL, Wu SP, Fang LW, Hwang TS - BMC Complement Altern Med (2015)

Bottom Line: It was found that the higher the concentration of A. camphorata extracts, the higher the DPPH radical-scavenging effect.A. camphorata extract at concentrations between 0.625 and 10 mg/ml was found to be neither toxic nor mutagenic.However, the higher A. camphorata concentration (10 mg/ml) used in the test showed higher inhibitory effects on 4NQNO in a dose-dependent manner.

View Article: PubMed Central - PubMed

Affiliation: Department of Nutrition, I-Shou University, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, Taiwan. Jim09771@hotmail.com.

ABSTRACT

Background: Antrodia camphorata is a geographically special fungus and is one of the precious traditional medicines of Taiwan. A lot of reports have addressed its antioxidant activities and anticancer activities. In order to understand whether these protection effects were resulted from its ability of preventing DNA against hydroxyl radical damage, the A. camphorata extract was used to examine its antioxidant, antimutagenic and DNA-protective activities.

Methods: A. camphorata extract was prepared by extracting the lyophilized powder of A. camphorata mycelium with distilled water. The antioxidative activity of this A. camphorata extract was then evaluated by 2,2-diphenyl-1-picrylhydrozyl (DPPH) radical-scavenging assay, and the antimutagenic activities of the extract against direct mutagen 4-nitroquinoline N-oxide (4NQNO) and indirect mutagen benzo[a]pyrene (B[a]P) were evaluated by Ames test. The effects of the A. camphorata extract in terms of DNA protection against hydroxyl radical damage were also investigated.

Results: It was found that the higher the concentration of A. camphorata extracts, the higher the DPPH radical-scavenging effect. A. camphorata extract at concentrations between 0.625 and 10 mg/ml was found to be neither toxic nor mutagenic. However, the higher A. camphorata concentration (10 mg/ml) used in the test showed higher inhibitory effects on 4NQNO in a dose-dependent manner. The A. camphorata extract also showed reducing and scavenging activities against superoxide anion radical and also exhibited protective effects on DNA against hydroxyl radical-induced damage.

Conclusions: Results suggested that A. camphorata is a non-toxic and novel material with antioxidant, antimutagenic and DNA-protective activities and could be developed into health foods.

No MeSH data available.


Related in: MedlinePlus

The scavenging effects of Anthrodia camphorata extract against hydroxyl radicals. Data are expressed as mean ± SD (n = 3). The scavenging effect (%) = [1−(the absorbance of samples at wavelength 517 nm/ the absorbance of control (without sample) at wavelength 517 nm)] × 100 %
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4502644&req=5

Fig1: The scavenging effects of Anthrodia camphorata extract against hydroxyl radicals. Data are expressed as mean ± SD (n = 3). The scavenging effect (%) = [1−(the absorbance of samples at wavelength 517 nm/ the absorbance of control (without sample) at wavelength 517 nm)] × 100 %

Mentions: Antioxidant agents for inhibiting the lipid oxidation include providing hydrogen to scavenge peroxide radicals, and DPPH is a stable free radical which could accept electrons or hydrogen free radicals to form a stable molecule [13]; therefore, DPPH is a good chemical to generate free radicals and can be used for measuring the antioxidant activity of materials. In the investigation of scavenging ability for DPPH free radicals, results showed that ACE had significant scavenging ability. The scavenging ability was estimated to be 46.53 % when the concentration of ACE was 2.5 mg/ml, and the scavenging ability was proportional to the concentration of ACE. The positive control BHT also showed a scavenging ability of 92.23 % in the concentration of 0.625 mg/ml (Fig. 1). The antioxidant properties of A. camphorata were first described by Song et al. in 2002 [14]. It was found DMF and water-extracted ACE showed marked activity in free radical scavengeing and showed that the antioxidant ability of A. camphorata is proportional to the total phenolic content [14]; therefore, it is suggested that the scavenging ability of ACE against DPPH radicals should be contributed from the high content of total phenolics. The antioxidant properties of methanolic extracts from A. camphorata were also reported [15, 16]. All of studies showed similar results in antioxidant ability, which demonstrated its significant antioxidant activity from the concentration of mg/ml level. Our results agreed with the study reported by Song et al. since they also prepared ACE by water extraction; however, lower antioxidant activity and total phenolics content were observed, it should caused by preparing extract at 4 °C.Fig. 1


Effects of Antrodia camphorata extracts on anti-oxidation, anti-mutagenesis and protection of DNA against hydroxyl radical damage.

Hsieh YL, Wu SP, Fang LW, Hwang TS - BMC Complement Altern Med (2015)

The scavenging effects of Anthrodia camphorata extract against hydroxyl radicals. Data are expressed as mean ± SD (n = 3). The scavenging effect (%) = [1−(the absorbance of samples at wavelength 517 nm/ the absorbance of control (without sample) at wavelength 517 nm)] × 100 %
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4502644&req=5

Fig1: The scavenging effects of Anthrodia camphorata extract against hydroxyl radicals. Data are expressed as mean ± SD (n = 3). The scavenging effect (%) = [1−(the absorbance of samples at wavelength 517 nm/ the absorbance of control (without sample) at wavelength 517 nm)] × 100 %
Mentions: Antioxidant agents for inhibiting the lipid oxidation include providing hydrogen to scavenge peroxide radicals, and DPPH is a stable free radical which could accept electrons or hydrogen free radicals to form a stable molecule [13]; therefore, DPPH is a good chemical to generate free radicals and can be used for measuring the antioxidant activity of materials. In the investigation of scavenging ability for DPPH free radicals, results showed that ACE had significant scavenging ability. The scavenging ability was estimated to be 46.53 % when the concentration of ACE was 2.5 mg/ml, and the scavenging ability was proportional to the concentration of ACE. The positive control BHT also showed a scavenging ability of 92.23 % in the concentration of 0.625 mg/ml (Fig. 1). The antioxidant properties of A. camphorata were first described by Song et al. in 2002 [14]. It was found DMF and water-extracted ACE showed marked activity in free radical scavengeing and showed that the antioxidant ability of A. camphorata is proportional to the total phenolic content [14]; therefore, it is suggested that the scavenging ability of ACE against DPPH radicals should be contributed from the high content of total phenolics. The antioxidant properties of methanolic extracts from A. camphorata were also reported [15, 16]. All of studies showed similar results in antioxidant ability, which demonstrated its significant antioxidant activity from the concentration of mg/ml level. Our results agreed with the study reported by Song et al. since they also prepared ACE by water extraction; however, lower antioxidant activity and total phenolics content were observed, it should caused by preparing extract at 4 °C.Fig. 1

Bottom Line: It was found that the higher the concentration of A. camphorata extracts, the higher the DPPH radical-scavenging effect.A. camphorata extract at concentrations between 0.625 and 10 mg/ml was found to be neither toxic nor mutagenic.However, the higher A. camphorata concentration (10 mg/ml) used in the test showed higher inhibitory effects on 4NQNO in a dose-dependent manner.

View Article: PubMed Central - PubMed

Affiliation: Department of Nutrition, I-Shou University, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, Taiwan. Jim09771@hotmail.com.

ABSTRACT

Background: Antrodia camphorata is a geographically special fungus and is one of the precious traditional medicines of Taiwan. A lot of reports have addressed its antioxidant activities and anticancer activities. In order to understand whether these protection effects were resulted from its ability of preventing DNA against hydroxyl radical damage, the A. camphorata extract was used to examine its antioxidant, antimutagenic and DNA-protective activities.

Methods: A. camphorata extract was prepared by extracting the lyophilized powder of A. camphorata mycelium with distilled water. The antioxidative activity of this A. camphorata extract was then evaluated by 2,2-diphenyl-1-picrylhydrozyl (DPPH) radical-scavenging assay, and the antimutagenic activities of the extract against direct mutagen 4-nitroquinoline N-oxide (4NQNO) and indirect mutagen benzo[a]pyrene (B[a]P) were evaluated by Ames test. The effects of the A. camphorata extract in terms of DNA protection against hydroxyl radical damage were also investigated.

Results: It was found that the higher the concentration of A. camphorata extracts, the higher the DPPH radical-scavenging effect. A. camphorata extract at concentrations between 0.625 and 10 mg/ml was found to be neither toxic nor mutagenic. However, the higher A. camphorata concentration (10 mg/ml) used in the test showed higher inhibitory effects on 4NQNO in a dose-dependent manner. The A. camphorata extract also showed reducing and scavenging activities against superoxide anion radical and also exhibited protective effects on DNA against hydroxyl radical-induced damage.

Conclusions: Results suggested that A. camphorata is a non-toxic and novel material with antioxidant, antimutagenic and DNA-protective activities and could be developed into health foods.

No MeSH data available.


Related in: MedlinePlus