Limits...
A 16-week study to compare the effect of vildagliptin versus gliclazide on postprandial lipoprotein concentrations and oxidative stress in patients with type 2 diabetes inadequately controlled with metformin monotherapy.

Hissa MR, Cavalcante LL, Guimarães SB, Hissa MN - Diabetol Metab Syndr (2015)

Bottom Line: The decrease in A1c was lower in the vildagliptin group compared to gliclazide (-1.7 vs.-2.3 %, P = 0.031), however there was no difference in the number of patients reaching target glycated hemoglobin <7 % (50 vs. 61.1 %, p = 0.738).Only the group of vildagliptin presented at the end of the study compared to the beginning, decreased insulin values (599.6 vs.705, 59 pg/ml, p = 0.021), glucagon (46.6 vs.65, 2 pg/ml, p = 0.004) and the marker of oxidative stress TBARS (8.0 vs. 9.0 nmol MDA/ml, p = 0.035).Patients treated with vildagliptin had a higher HDL at the end of the study, less variance in weight, reduced insulin and glucagon as well as reduction of oxidative stress.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, Postgraduate Program, UFC, Fortaleza, Ceara Brazil.

ABSTRACT

Background: Diabetes is closely linked with coronary artery disease, either by means of direct effects of hyperglycemia, or indirectly by its frequent association with dyslipidemia. Any treatment for diabetes that has beyond the capacity of reduce glycated hemoglobin, the propensity to improve lipid profile and reduce weight will bring many benefits to patients.

Method: We compare the effects of vildagliptin with the gliclazide on lipid profile before and after a standardized meal test, on glycemic control and oxidative stress in diabetic patients using metformin without adequate glycemic control. This is a prospective study of 16 weeks with diabetic patients using metformin without adequate glycemic control. Patients were randomized to receive gliclazide 30-120 mg/day or vildagliptin 100 mg/day.

Results: 36 patients were randomized, with no loss of follow up. Regarding the lipid profile the difference observed at the end of the study was a higher HDL level in the vildagliptin group compared with gliclazide fasting (62.3 vs. 51.3 mg/dL, p = 0.021) and postprandial (62.9 vs. 51.1 mg/dL, p = 0.015). We also observed a variation of negative weight (decrease the end compared to the beginning) of the vildagliptin and a positive (increase) in the gliclazide (-0.3 vs. +1.4 Kg, p = 0.048). The decrease in A1c was lower in the vildagliptin group compared to gliclazide (-1.7 vs.-2.3 %, P = 0.031), however there was no difference in the number of patients reaching target glycated hemoglobin <7 % (50 vs. 61.1 %, p = 0.738). Only the group of vildagliptin presented at the end of the study compared to the beginning, decreased insulin values (599.6 vs.705, 59 pg/ml, p = 0.021), glucagon (46.6 vs.65, 2 pg/ml, p = 0.004) and the marker of oxidative stress TBARS (8.0 vs. 9.0 nmol MDA/ml, p = 0.035).

Conclusion: Vildagliptin showed some advantages in addition to metformin in relation to addition of gliclazide. Patients treated with vildagliptin had a higher HDL at the end of the study, less variance in weight, reduced insulin and glucagon as well as reduction of oxidative stress.

No MeSH data available.


Related in: MedlinePlus

Study design
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4499917&req=5

Fig1: Study design

Mentions: The study consisted of a 2-week screening period and a 16-week treatment period with either vildagliptin or gliclazide plus metformin, followed by 4 week on follow up. At the initial interview, height, body weight, vital signs and physical examination were performed. Fasting blood samples were performed to assure the inclusion and exclusion criterias (A1c, fast glucose, hepatic function test, serum blood urea nitrogen and creatinine and hematology). At visit 1 (2 weeks later) selected patients were randomly assigned to either vildagliptin or gliclazide group. Participants assigned to vildagliptin group were instructed to take one capsule (50 mg) before their morning meal and before dinner. Participants assigned to gliclazide group were instructed to take the dose of gliclazide before the morning meal. It was allowed to titrate gliclazide to a maximum of 120 mg/daily. Compliance was assessed by pill counting. Blood was also collected at visit 1 (week zero) for the assessment of, A1c, fast glucose, lipid profile (total cholesterol, triglyceride, HDL cholesterol, oxidative stress markers [reactive substances to thiobarbituric acid (TBARS), total antioxidant status (TAOS)]; Insulin, C- peptide, glucagon, GLP-1 and GIP. All laboratory tests were repeated in visit 5 (week 16) (Fig. 1).Fig. 1


A 16-week study to compare the effect of vildagliptin versus gliclazide on postprandial lipoprotein concentrations and oxidative stress in patients with type 2 diabetes inadequately controlled with metformin monotherapy.

Hissa MR, Cavalcante LL, Guimarães SB, Hissa MN - Diabetol Metab Syndr (2015)

Study design
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4499917&req=5

Fig1: Study design
Mentions: The study consisted of a 2-week screening period and a 16-week treatment period with either vildagliptin or gliclazide plus metformin, followed by 4 week on follow up. At the initial interview, height, body weight, vital signs and physical examination were performed. Fasting blood samples were performed to assure the inclusion and exclusion criterias (A1c, fast glucose, hepatic function test, serum blood urea nitrogen and creatinine and hematology). At visit 1 (2 weeks later) selected patients were randomly assigned to either vildagliptin or gliclazide group. Participants assigned to vildagliptin group were instructed to take one capsule (50 mg) before their morning meal and before dinner. Participants assigned to gliclazide group were instructed to take the dose of gliclazide before the morning meal. It was allowed to titrate gliclazide to a maximum of 120 mg/daily. Compliance was assessed by pill counting. Blood was also collected at visit 1 (week zero) for the assessment of, A1c, fast glucose, lipid profile (total cholesterol, triglyceride, HDL cholesterol, oxidative stress markers [reactive substances to thiobarbituric acid (TBARS), total antioxidant status (TAOS)]; Insulin, C- peptide, glucagon, GLP-1 and GIP. All laboratory tests were repeated in visit 5 (week 16) (Fig. 1).Fig. 1

Bottom Line: The decrease in A1c was lower in the vildagliptin group compared to gliclazide (-1.7 vs.-2.3 %, P = 0.031), however there was no difference in the number of patients reaching target glycated hemoglobin <7 % (50 vs. 61.1 %, p = 0.738).Only the group of vildagliptin presented at the end of the study compared to the beginning, decreased insulin values (599.6 vs.705, 59 pg/ml, p = 0.021), glucagon (46.6 vs.65, 2 pg/ml, p = 0.004) and the marker of oxidative stress TBARS (8.0 vs. 9.0 nmol MDA/ml, p = 0.035).Patients treated with vildagliptin had a higher HDL at the end of the study, less variance in weight, reduced insulin and glucagon as well as reduction of oxidative stress.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, Postgraduate Program, UFC, Fortaleza, Ceara Brazil.

ABSTRACT

Background: Diabetes is closely linked with coronary artery disease, either by means of direct effects of hyperglycemia, or indirectly by its frequent association with dyslipidemia. Any treatment for diabetes that has beyond the capacity of reduce glycated hemoglobin, the propensity to improve lipid profile and reduce weight will bring many benefits to patients.

Method: We compare the effects of vildagliptin with the gliclazide on lipid profile before and after a standardized meal test, on glycemic control and oxidative stress in diabetic patients using metformin without adequate glycemic control. This is a prospective study of 16 weeks with diabetic patients using metformin without adequate glycemic control. Patients were randomized to receive gliclazide 30-120 mg/day or vildagliptin 100 mg/day.

Results: 36 patients were randomized, with no loss of follow up. Regarding the lipid profile the difference observed at the end of the study was a higher HDL level in the vildagliptin group compared with gliclazide fasting (62.3 vs. 51.3 mg/dL, p = 0.021) and postprandial (62.9 vs. 51.1 mg/dL, p = 0.015). We also observed a variation of negative weight (decrease the end compared to the beginning) of the vildagliptin and a positive (increase) in the gliclazide (-0.3 vs. +1.4 Kg, p = 0.048). The decrease in A1c was lower in the vildagliptin group compared to gliclazide (-1.7 vs.-2.3 %, P = 0.031), however there was no difference in the number of patients reaching target glycated hemoglobin <7 % (50 vs. 61.1 %, p = 0.738). Only the group of vildagliptin presented at the end of the study compared to the beginning, decreased insulin values (599.6 vs.705, 59 pg/ml, p = 0.021), glucagon (46.6 vs.65, 2 pg/ml, p = 0.004) and the marker of oxidative stress TBARS (8.0 vs. 9.0 nmol MDA/ml, p = 0.035).

Conclusion: Vildagliptin showed some advantages in addition to metformin in relation to addition of gliclazide. Patients treated with vildagliptin had a higher HDL at the end of the study, less variance in weight, reduced insulin and glucagon as well as reduction of oxidative stress.

No MeSH data available.


Related in: MedlinePlus