Limits...
A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease.

Nickol AH, Frise MC, Cheng HY, McGahey A, McFadyen BM, Harris-Wright T, Bart NK, Curtis MK, Khandwala S, O'Neill DP, Pollard KA, Hardinge FM, Rahman NM, Armitage AE, Dorrington KL, Drakesmith H, Ratcliffe PJ, Robbins PA - BMJ Open (2015)

Bottom Line: Iron deficiency, with or without anaemia, is associated with other chronic conditions, such as congestive heart failure, where it predicts a worse outcome.Patients with iron deficiency had more self-reported exacerbations and a trend towards worse exercise tolerance.Iron deficiency associates with hypoxaemia, an excess of exacerbations and, possibly, worse exercise tolerance, all markers of poor prognosis.

View Article: PubMed Central - PubMed

Affiliation: Oxford Centre for Respiratory Medicine and the Oxford Respiratory Trials Unit, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, UK Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.

No MeSH data available.


Related in: MedlinePlus

(A and B) Cumulative frequency plots for ferritin and hepcidin. Data for the chronic obstructive pulmonary disease (COPD) cohort are plotted with a solid line and those for the control cohort with a dashed line; the shaded area indicates the normal range for each assay. (C and D) Box plots showing distribution of results for ferritin and hepcidin by iron status in the COPD cohort. Ferritin (median 28.3 vs 79.9 µg/L; p<0.001) and hepcidin (median 21.4 vs 33.4 µg/L; p=0.013) were both lower in the iron-deficient (ID) group. (E) Scatter plot showing relationship between hepcidin and ferritin in the COPD cohort (filled circles) and control cohort (empty circles); the regression line is for both groups taken together; individual regression lines were not significantly different.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4499677&req=5

BMJOPEN2015007911F3: (A and B) Cumulative frequency plots for ferritin and hepcidin. Data for the chronic obstructive pulmonary disease (COPD) cohort are plotted with a solid line and those for the control cohort with a dashed line; the shaded area indicates the normal range for each assay. (C and D) Box plots showing distribution of results for ferritin and hepcidin by iron status in the COPD cohort. Ferritin (median 28.3 vs 79.9 µg/L; p<0.001) and hepcidin (median 21.4 vs 33.4 µg/L; p=0.013) were both lower in the iron-deficient (ID) group. (E) Scatter plot showing relationship between hepcidin and ferritin in the COPD cohort (filled circles) and control cohort (empty circles); the regression line is for both groups taken together; individual regression lines were not significantly different.

Mentions: Figure 3 shows cumulative frequency plots for ferritin and hepcidin. These were similar for COPD and control cohorts. A positive correlation between hepcidin and ferritin values was seen for patients with COPD as well as for healthy controls (figure 3E). For both COPD and control cohorts, ferritin and hepcidin levels were significantly lower in ID versus IR individuals (COPD cohort medians: ferritin 28.3 vs 79.9 µg/L, p<0.001; hepcidin 21.4 vs 33.4 µg/L, p=0.013; control cohort medians: ferritin 10.5 vs 76.3 µg/L, p=0.008; hepcidin 3.33 vs 35.1 µg/L, p=0.007). For the COPD cohort, linear regression analysis indicated CRP was a significant factor determining both ferritin (p<0.001) and hepcidin (p<0.001). This was not the case for the healthy control cohort, where CRP values were low. Consistent with the elevation of ferritin and hepcidin by inflammation, the values for these were significantly higher in the COPD ID subgroup compared with the control ID subgroup (median ferritin 28.3 vs 10.5 µg/L, p=0.040; median hepcidin 21.4 vs 3.33 µg/L, p=0.020).


A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease.

Nickol AH, Frise MC, Cheng HY, McGahey A, McFadyen BM, Harris-Wright T, Bart NK, Curtis MK, Khandwala S, O'Neill DP, Pollard KA, Hardinge FM, Rahman NM, Armitage AE, Dorrington KL, Drakesmith H, Ratcliffe PJ, Robbins PA - BMJ Open (2015)

(A and B) Cumulative frequency plots for ferritin and hepcidin. Data for the chronic obstructive pulmonary disease (COPD) cohort are plotted with a solid line and those for the control cohort with a dashed line; the shaded area indicates the normal range for each assay. (C and D) Box plots showing distribution of results for ferritin and hepcidin by iron status in the COPD cohort. Ferritin (median 28.3 vs 79.9 µg/L; p<0.001) and hepcidin (median 21.4 vs 33.4 µg/L; p=0.013) were both lower in the iron-deficient (ID) group. (E) Scatter plot showing relationship between hepcidin and ferritin in the COPD cohort (filled circles) and control cohort (empty circles); the regression line is for both groups taken together; individual regression lines were not significantly different.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4499677&req=5

BMJOPEN2015007911F3: (A and B) Cumulative frequency plots for ferritin and hepcidin. Data for the chronic obstructive pulmonary disease (COPD) cohort are plotted with a solid line and those for the control cohort with a dashed line; the shaded area indicates the normal range for each assay. (C and D) Box plots showing distribution of results for ferritin and hepcidin by iron status in the COPD cohort. Ferritin (median 28.3 vs 79.9 µg/L; p<0.001) and hepcidin (median 21.4 vs 33.4 µg/L; p=0.013) were both lower in the iron-deficient (ID) group. (E) Scatter plot showing relationship between hepcidin and ferritin in the COPD cohort (filled circles) and control cohort (empty circles); the regression line is for both groups taken together; individual regression lines were not significantly different.
Mentions: Figure 3 shows cumulative frequency plots for ferritin and hepcidin. These were similar for COPD and control cohorts. A positive correlation between hepcidin and ferritin values was seen for patients with COPD as well as for healthy controls (figure 3E). For both COPD and control cohorts, ferritin and hepcidin levels were significantly lower in ID versus IR individuals (COPD cohort medians: ferritin 28.3 vs 79.9 µg/L, p<0.001; hepcidin 21.4 vs 33.4 µg/L, p=0.013; control cohort medians: ferritin 10.5 vs 76.3 µg/L, p=0.008; hepcidin 3.33 vs 35.1 µg/L, p=0.007). For the COPD cohort, linear regression analysis indicated CRP was a significant factor determining both ferritin (p<0.001) and hepcidin (p<0.001). This was not the case for the healthy control cohort, where CRP values were low. Consistent with the elevation of ferritin and hepcidin by inflammation, the values for these were significantly higher in the COPD ID subgroup compared with the control ID subgroup (median ferritin 28.3 vs 10.5 µg/L, p=0.040; median hepcidin 21.4 vs 3.33 µg/L, p=0.020).

Bottom Line: Iron deficiency, with or without anaemia, is associated with other chronic conditions, such as congestive heart failure, where it predicts a worse outcome.Patients with iron deficiency had more self-reported exacerbations and a trend towards worse exercise tolerance.Iron deficiency associates with hypoxaemia, an excess of exacerbations and, possibly, worse exercise tolerance, all markers of poor prognosis.

View Article: PubMed Central - PubMed

Affiliation: Oxford Centre for Respiratory Medicine and the Oxford Respiratory Trials Unit, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, UK Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.

No MeSH data available.


Related in: MedlinePlus