Limits...
Self-generated morphology in lagoon reefs.

Blakeway D, Hamblin MG - PeerJ (2015)

Bottom Line: In these situations reef morphology can be considered a phenotype of the predominant reef building organism.The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images.More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Earth and Environment, University of Western Australia , Crawley , Western Australia, Australia.

ABSTRACT
The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decoded. Traditionally, reef morphology has been attributed to external controls such as substrate topography or hydrodynamic influences. Little is known about inherent reef morphology in the absence of external control. Here we use reef growth simulations, based on observations in the cellular reefs of Western Australia's Houtman Abrolhos Islands, to show that reef morphology is fundamentally determined by the mechanical behaviour of the reef-building organisms themselves-specifically their tendency to either remain in place or to collapse. Reef-building organisms that tend to remain in place, such as massive and encrusting corals or coralline algae, produce nodular reefs, whereas those that tend to collapse, such as branching Acropora, produce cellular reefs. The purest reef growth forms arise in sheltered lagoons dominated by a single type of reef builder, as in the branching Acropora-dominated lagoons of the Abrolhos. In these situations reef morphology can be considered a phenotype of the predominant reef building organism. The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images. More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef.

No MeSH data available.


Related in: MedlinePlus

Block diagram illustrating the Maze’s egg-box topography and the three idealised stages of cellular reef development.The cross-section is hypothetical but consistent with seismic and core data.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4499466&req=5

fig-4: Block diagram illustrating the Maze’s egg-box topography and the three idealised stages of cellular reef development.The cross-section is hypothetical but consistent with seismic and core data.

Mentions: Underwater observations show that the different reef stages are joined in a continuous reef blanket with a distinctive undulating form, resembling the ‘egg box’ structure described by Kan et al. (2015) in the cellular reefs of Nagura Bay, Japan. The relationship between the shapes of the different stages can be envisaged by imagining sequentially deeper horizontal slices through a solid egg box. The initial slices contact the peaks, producing circular shapes. These reefs correspond to Wyrwoll et al.’s (2006) pinnacles but we subsequently refer to them as haystacks, based on earlier descriptions of similar Acropora-dominated reefs in the Caribbean (Goreau, 1959; Kinzie, 1973). Deeper slices reach the ridges between adjacent peaks, producing stellate shapes. Subsequent slices produce a platform surrounding enclosed depressions and eventually a solid platform. Below we describe the sequence in the three idealised stages: haystack, stellate and platform. However, it should be noted that the sequence is a continuum and that sites within each stage may have features of earlier and/or later stages. Figure 3 shows representative transect profiles from each stage and Fig. 4 is a schematic block diagram incorporating the main features of the three idealised stages.


Self-generated morphology in lagoon reefs.

Blakeway D, Hamblin MG - PeerJ (2015)

Block diagram illustrating the Maze’s egg-box topography and the three idealised stages of cellular reef development.The cross-section is hypothetical but consistent with seismic and core data.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4499466&req=5

fig-4: Block diagram illustrating the Maze’s egg-box topography and the three idealised stages of cellular reef development.The cross-section is hypothetical but consistent with seismic and core data.
Mentions: Underwater observations show that the different reef stages are joined in a continuous reef blanket with a distinctive undulating form, resembling the ‘egg box’ structure described by Kan et al. (2015) in the cellular reefs of Nagura Bay, Japan. The relationship between the shapes of the different stages can be envisaged by imagining sequentially deeper horizontal slices through a solid egg box. The initial slices contact the peaks, producing circular shapes. These reefs correspond to Wyrwoll et al.’s (2006) pinnacles but we subsequently refer to them as haystacks, based on earlier descriptions of similar Acropora-dominated reefs in the Caribbean (Goreau, 1959; Kinzie, 1973). Deeper slices reach the ridges between adjacent peaks, producing stellate shapes. Subsequent slices produce a platform surrounding enclosed depressions and eventually a solid platform. Below we describe the sequence in the three idealised stages: haystack, stellate and platform. However, it should be noted that the sequence is a continuum and that sites within each stage may have features of earlier and/or later stages. Figure 3 shows representative transect profiles from each stage and Fig. 4 is a schematic block diagram incorporating the main features of the three idealised stages.

Bottom Line: In these situations reef morphology can be considered a phenotype of the predominant reef building organism.The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images.More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Earth and Environment, University of Western Australia , Crawley , Western Australia, Australia.

ABSTRACT
The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decoded. Traditionally, reef morphology has been attributed to external controls such as substrate topography or hydrodynamic influences. Little is known about inherent reef morphology in the absence of external control. Here we use reef growth simulations, based on observations in the cellular reefs of Western Australia's Houtman Abrolhos Islands, to show that reef morphology is fundamentally determined by the mechanical behaviour of the reef-building organisms themselves-specifically their tendency to either remain in place or to collapse. Reef-building organisms that tend to remain in place, such as massive and encrusting corals or coralline algae, produce nodular reefs, whereas those that tend to collapse, such as branching Acropora, produce cellular reefs. The purest reef growth forms arise in sheltered lagoons dominated by a single type of reef builder, as in the branching Acropora-dominated lagoons of the Abrolhos. In these situations reef morphology can be considered a phenotype of the predominant reef building organism. The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images. More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef.

No MeSH data available.


Related in: MedlinePlus