Limits...
Exosomes in cancer: small particle, big player.

Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W - J Hematol Oncol (2015)

Bottom Line: Exosomes have emerged as a novel mode of intercellular communication.Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells.Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.

View Article: PubMed Central - PubMed

Affiliation: Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China. xuzhang@ujs.edu.cn.

ABSTRACT
Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer message from tumor cells to immune cells and stromal cells, contributing to the escape from immune surveillance and the formation of tumor niche. In this review, we highlight the recent advances in the biology of exosomes as cancer communicasomes. We review the multifaceted roles of exosomes, the small secreted particles, in communicating with other cells within tumor microenvironment. Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.

No MeSH data available.


Related in: MedlinePlus

Roles of exosomes in cancer. Exosomes are critically involved in tumor initiation, growth, progression, metastasis, and drug resistance by transferring oncogenic proteins and nucleic acids. Tumor-derived exosomes can activate endothelial cells to support tumor angiogenesis and thrombosis. Tumor-derived exosomes can convert fibroblasts and MSCs into myofibroblasts to facilitate tumor angiogenesis and metastasis. Tumor-derived exosomes contribute to create an immunosuppressive microenvironment by inducing apoptosis and impairing the function of effector T cells and NK cells, inhibiting DC differentiation, expanding MDSCs, as well as promoting Treg cell activity. Tumor-derived exosomes can mobilize neutrophils and skew M2 polarization of macrophages to promote tumor progression. Moreover, tumor-derived exosomes can help tumor cells develop drug resistance by transferring multidrug-resistant proteins and miRNAs, exporting tumoricidal drugs, and neutralizing antibody-based drugs. In turn, exosomes from activated T cells, macrophages, and stromal cells can promote tumor metastasis and drug resistance
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4496882&req=5

Fig2: Roles of exosomes in cancer. Exosomes are critically involved in tumor initiation, growth, progression, metastasis, and drug resistance by transferring oncogenic proteins and nucleic acids. Tumor-derived exosomes can activate endothelial cells to support tumor angiogenesis and thrombosis. Tumor-derived exosomes can convert fibroblasts and MSCs into myofibroblasts to facilitate tumor angiogenesis and metastasis. Tumor-derived exosomes contribute to create an immunosuppressive microenvironment by inducing apoptosis and impairing the function of effector T cells and NK cells, inhibiting DC differentiation, expanding MDSCs, as well as promoting Treg cell activity. Tumor-derived exosomes can mobilize neutrophils and skew M2 polarization of macrophages to promote tumor progression. Moreover, tumor-derived exosomes can help tumor cells develop drug resistance by transferring multidrug-resistant proteins and miRNAs, exporting tumoricidal drugs, and neutralizing antibody-based drugs. In turn, exosomes from activated T cells, macrophages, and stromal cells can promote tumor metastasis and drug resistance

Mentions: Accumulating evidence indicates that exosomes play important roles in cancer. Exosomes transfer oncogenic proteins and nucleic acids to modulate the activity of recipient cells and play decisive roles in tumorigenesis, growth, progression, metastasis, and drug resistance (Fig. 2). Exosomes can act on various recipient cells. The uptake of exosomes may induce a persistent and efficient modulation of recipient cells. In this section, we will discuss about the roles of exosomes in cancer and the molecular mechanisms (Table 1).Fig. 2


Exosomes in cancer: small particle, big player.

Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W - J Hematol Oncol (2015)

Roles of exosomes in cancer. Exosomes are critically involved in tumor initiation, growth, progression, metastasis, and drug resistance by transferring oncogenic proteins and nucleic acids. Tumor-derived exosomes can activate endothelial cells to support tumor angiogenesis and thrombosis. Tumor-derived exosomes can convert fibroblasts and MSCs into myofibroblasts to facilitate tumor angiogenesis and metastasis. Tumor-derived exosomes contribute to create an immunosuppressive microenvironment by inducing apoptosis and impairing the function of effector T cells and NK cells, inhibiting DC differentiation, expanding MDSCs, as well as promoting Treg cell activity. Tumor-derived exosomes can mobilize neutrophils and skew M2 polarization of macrophages to promote tumor progression. Moreover, tumor-derived exosomes can help tumor cells develop drug resistance by transferring multidrug-resistant proteins and miRNAs, exporting tumoricidal drugs, and neutralizing antibody-based drugs. In turn, exosomes from activated T cells, macrophages, and stromal cells can promote tumor metastasis and drug resistance
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4496882&req=5

Fig2: Roles of exosomes in cancer. Exosomes are critically involved in tumor initiation, growth, progression, metastasis, and drug resistance by transferring oncogenic proteins and nucleic acids. Tumor-derived exosomes can activate endothelial cells to support tumor angiogenesis and thrombosis. Tumor-derived exosomes can convert fibroblasts and MSCs into myofibroblasts to facilitate tumor angiogenesis and metastasis. Tumor-derived exosomes contribute to create an immunosuppressive microenvironment by inducing apoptosis and impairing the function of effector T cells and NK cells, inhibiting DC differentiation, expanding MDSCs, as well as promoting Treg cell activity. Tumor-derived exosomes can mobilize neutrophils and skew M2 polarization of macrophages to promote tumor progression. Moreover, tumor-derived exosomes can help tumor cells develop drug resistance by transferring multidrug-resistant proteins and miRNAs, exporting tumoricidal drugs, and neutralizing antibody-based drugs. In turn, exosomes from activated T cells, macrophages, and stromal cells can promote tumor metastasis and drug resistance
Mentions: Accumulating evidence indicates that exosomes play important roles in cancer. Exosomes transfer oncogenic proteins and nucleic acids to modulate the activity of recipient cells and play decisive roles in tumorigenesis, growth, progression, metastasis, and drug resistance (Fig. 2). Exosomes can act on various recipient cells. The uptake of exosomes may induce a persistent and efficient modulation of recipient cells. In this section, we will discuss about the roles of exosomes in cancer and the molecular mechanisms (Table 1).Fig. 2

Bottom Line: Exosomes have emerged as a novel mode of intercellular communication.Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells.Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.

View Article: PubMed Central - PubMed

Affiliation: Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China. xuzhang@ujs.edu.cn.

ABSTRACT
Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer message from tumor cells to immune cells and stromal cells, contributing to the escape from immune surveillance and the formation of tumor niche. In this review, we highlight the recent advances in the biology of exosomes as cancer communicasomes. We review the multifaceted roles of exosomes, the small secreted particles, in communicating with other cells within tumor microenvironment. Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.

No MeSH data available.


Related in: MedlinePlus