Limits...
CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells.

Han J, Chu J, Keung Chan W, Zhang J, Wang Y, Cohen JB, Victor A, Meisen WH, Kim SH, Grandi P, Wang QE, He X, Nakano I, Chiocca EA, Glorioso JC, Kaur B, Caligiuri MA, Yu J - Sci Rep (2015)

Bottom Line: We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells.EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner.In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival.

View Article: PubMed Central - PubMed

Affiliation: 1] Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA [2] The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.

ABSTRACT
Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB.

No MeSH data available.


Related in: MedlinePlus

EGFR-CAR-modified NK-92 and NKL cells display enhanced lysis of EGFR+ GSCs.(A) Cytotoxic activity of NK-92-EV or NK-92-EGFR-CAR cells (upper panel) and NKL-EV or NKL-EGFR-CAR cells (lower panel) against GB1123, GB30, GB157V3SL, and GB84V3SL GSCs using a chromium-51 release assay. (B) ELISA analysis of IFN-γ secretion by NK-92-EGFR-CAR or NK-92-EV cells (upper panel) and NKL-EV or NKL-EGFR-CAR cells (lower panel) when co-cultured with GSCs. Representative data of three independent experiments are shown. *p < 0.05; **p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496728&req=5

f4: EGFR-CAR-modified NK-92 and NKL cells display enhanced lysis of EGFR+ GSCs.(A) Cytotoxic activity of NK-92-EV or NK-92-EGFR-CAR cells (upper panel) and NKL-EV or NKL-EGFR-CAR cells (lower panel) against GB1123, GB30, GB157V3SL, and GB84V3SL GSCs using a chromium-51 release assay. (B) ELISA analysis of IFN-γ secretion by NK-92-EGFR-CAR or NK-92-EV cells (upper panel) and NKL-EV or NKL-EGFR-CAR cells (lower panel) when co-cultured with GSCs. Representative data of three independent experiments are shown. *p < 0.05; **p < 0.01.

Mentions: We next assessed the capacity of EGFR-CAR-modified NK-92 and NKL cells to lyse patient-derived GSCs with surface expression of endogenous EGFR protein. EGFR-CAR-transduced NK-92 cells demonstrated a significantly enhanced ability to kill EGFR+ MES GSCs (GB1123 and GB30) and PN GSCs (GB157V3SL and GB84V3SL) when compared to mock-transduced NK cells (Fig. 4A, upper panels). Similar data were observed in experiments repeated using NKL cells transduced with EGFR-CAR (Fig. 4A, lower panels). Primary NK cells transduced with EGFR-CAR also showed significantly more potent cytotoxicity than control cells against patient-derived GB30 and GB157V3SL GSCs, which express EGFRvIII (Supplemental Fig. 1B). Likewise, EGFR-CAR-transduced NK-92 and NKL cells produced significantly more IFN-γ when co-cultured with EGFR+ GSCs and compared to mock-transduced NK-92 (Fig. 4Bupper panels) and NKL cells (Fig. 4Blower panels). These results indicate that modification of NK cells with an EGFR-CAR can significantly enhance NK cell cytotoxicity and IFN-γ production against EGFR+ GSCs compared to unmodified NK cell controls.


CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells.

Han J, Chu J, Keung Chan W, Zhang J, Wang Y, Cohen JB, Victor A, Meisen WH, Kim SH, Grandi P, Wang QE, He X, Nakano I, Chiocca EA, Glorioso JC, Kaur B, Caligiuri MA, Yu J - Sci Rep (2015)

EGFR-CAR-modified NK-92 and NKL cells display enhanced lysis of EGFR+ GSCs.(A) Cytotoxic activity of NK-92-EV or NK-92-EGFR-CAR cells (upper panel) and NKL-EV or NKL-EGFR-CAR cells (lower panel) against GB1123, GB30, GB157V3SL, and GB84V3SL GSCs using a chromium-51 release assay. (B) ELISA analysis of IFN-γ secretion by NK-92-EGFR-CAR or NK-92-EV cells (upper panel) and NKL-EV or NKL-EGFR-CAR cells (lower panel) when co-cultured with GSCs. Representative data of three independent experiments are shown. *p < 0.05; **p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496728&req=5

f4: EGFR-CAR-modified NK-92 and NKL cells display enhanced lysis of EGFR+ GSCs.(A) Cytotoxic activity of NK-92-EV or NK-92-EGFR-CAR cells (upper panel) and NKL-EV or NKL-EGFR-CAR cells (lower panel) against GB1123, GB30, GB157V3SL, and GB84V3SL GSCs using a chromium-51 release assay. (B) ELISA analysis of IFN-γ secretion by NK-92-EGFR-CAR or NK-92-EV cells (upper panel) and NKL-EV or NKL-EGFR-CAR cells (lower panel) when co-cultured with GSCs. Representative data of three independent experiments are shown. *p < 0.05; **p < 0.01.
Mentions: We next assessed the capacity of EGFR-CAR-modified NK-92 and NKL cells to lyse patient-derived GSCs with surface expression of endogenous EGFR protein. EGFR-CAR-transduced NK-92 cells demonstrated a significantly enhanced ability to kill EGFR+ MES GSCs (GB1123 and GB30) and PN GSCs (GB157V3SL and GB84V3SL) when compared to mock-transduced NK cells (Fig. 4A, upper panels). Similar data were observed in experiments repeated using NKL cells transduced with EGFR-CAR (Fig. 4A, lower panels). Primary NK cells transduced with EGFR-CAR also showed significantly more potent cytotoxicity than control cells against patient-derived GB30 and GB157V3SL GSCs, which express EGFRvIII (Supplemental Fig. 1B). Likewise, EGFR-CAR-transduced NK-92 and NKL cells produced significantly more IFN-γ when co-cultured with EGFR+ GSCs and compared to mock-transduced NK-92 (Fig. 4Bupper panels) and NKL cells (Fig. 4Blower panels). These results indicate that modification of NK cells with an EGFR-CAR can significantly enhance NK cell cytotoxicity and IFN-γ production against EGFR+ GSCs compared to unmodified NK cell controls.

Bottom Line: We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells.EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner.In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival.

View Article: PubMed Central - PubMed

Affiliation: 1] Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA [2] The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.

ABSTRACT
Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB.

No MeSH data available.


Related in: MedlinePlus