Limits...
Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization.

León-Sicairos N, Angulo-Zamudio UA, de la Garza M, Velázquez-Román J, Flores-Villaseñor HM, Canizalez-Román A - Front Microbiol (2015)

Bottom Line: In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor.The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin.The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico ; Departamento de Investigación, Hospital Pediátrico de Sinaloa "Dr. Rigoberto Aguilar Pico" Culiacán, Mexico.

ABSTRACT
Iron is an essential element for the growth and development of virtually all living organisms. As iron acquisition is critical for the pathogenesis, a host defense strategy during infection is to sequester iron to restrict the growth of invading pathogens. To counteract this strategy, bacteria such as Vibrio parahaemolyticus have adapted to such an environment by developing mechanisms to obtain iron from human hosts. This review focuses on the multiple strategies employed by V. parahaemolyticus to obtain nutritional iron from host sources. In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor. The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin. The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.

No MeSH data available.


Related in: MedlinePlus

Iron acquisition systems Used by V. parahaemolyticus to acquire iron. V. parahaemolyticus can be found free swimming or attached to underwater surfaces, seafood products, and humans. The bacterium produces and chelates iron from different sources (depending on the habitat) and transports ferric-charged vibrioferrin into cells via the outer-membrane receptors PvuA1 and PvuA2 and the inner-membrane ABC transport system PvuBCDE. Three sets of TonB systems (TonB1, TonB2, and TonB3) are present in this bacterium, and the energy required for PvuA1 and PvuA2 to transport ferric vibrioferrin is provided by the TonB2 system for PvuA1 and both the TonB1 and TonB2 systems for PvuA2. V. parahaemolyticus can also utilize hydroxamate-type xenosiderophores, such as desferri-ferrichrome and aerobactin. Discontinuous lines indicate possible iron sources and iron acquisition mechanisms in V. parahaemolyticus.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496571&req=5

Figure 3: Iron acquisition systems Used by V. parahaemolyticus to acquire iron. V. parahaemolyticus can be found free swimming or attached to underwater surfaces, seafood products, and humans. The bacterium produces and chelates iron from different sources (depending on the habitat) and transports ferric-charged vibrioferrin into cells via the outer-membrane receptors PvuA1 and PvuA2 and the inner-membrane ABC transport system PvuBCDE. Three sets of TonB systems (TonB1, TonB2, and TonB3) are present in this bacterium, and the energy required for PvuA1 and PvuA2 to transport ferric vibrioferrin is provided by the TonB2 system for PvuA1 and both the TonB1 and TonB2 systems for PvuA2. V. parahaemolyticus can also utilize hydroxamate-type xenosiderophores, such as desferri-ferrichrome and aerobactin. Discontinuous lines indicate possible iron sources and iron acquisition mechanisms in V. parahaemolyticus.

Mentions: The expression of two proteolytic proteins of 43 and 90 kDa from V. parahaemolyticus were identified. Apparently the protease of 43 kDa is capable of degrading Hb and it has been speculated that this could be one of the strategies of V. parahaemolyticus to acquire iron from the human host (Wong and Shyu, 1994). By using the BLAST, we also identified genes that could play a role in Fe acquisition (Table 1). Although they have not reported and their biological functions have not been described, these genes likely encode proteins involved in Fe acquisition for V. parahaemolyticus in different niches. The probable functions of putative Fe acquisition genes and homologies are described in Table 1. Additionally; a schematic view of Fe acquisition systems with putative proteins used by V. parahaemolyticus is shown in Figure 3.


Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization.

León-Sicairos N, Angulo-Zamudio UA, de la Garza M, Velázquez-Román J, Flores-Villaseñor HM, Canizalez-Román A - Front Microbiol (2015)

Iron acquisition systems Used by V. parahaemolyticus to acquire iron. V. parahaemolyticus can be found free swimming or attached to underwater surfaces, seafood products, and humans. The bacterium produces and chelates iron from different sources (depending on the habitat) and transports ferric-charged vibrioferrin into cells via the outer-membrane receptors PvuA1 and PvuA2 and the inner-membrane ABC transport system PvuBCDE. Three sets of TonB systems (TonB1, TonB2, and TonB3) are present in this bacterium, and the energy required for PvuA1 and PvuA2 to transport ferric vibrioferrin is provided by the TonB2 system for PvuA1 and both the TonB1 and TonB2 systems for PvuA2. V. parahaemolyticus can also utilize hydroxamate-type xenosiderophores, such as desferri-ferrichrome and aerobactin. Discontinuous lines indicate possible iron sources and iron acquisition mechanisms in V. parahaemolyticus.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496571&req=5

Figure 3: Iron acquisition systems Used by V. parahaemolyticus to acquire iron. V. parahaemolyticus can be found free swimming or attached to underwater surfaces, seafood products, and humans. The bacterium produces and chelates iron from different sources (depending on the habitat) and transports ferric-charged vibrioferrin into cells via the outer-membrane receptors PvuA1 and PvuA2 and the inner-membrane ABC transport system PvuBCDE. Three sets of TonB systems (TonB1, TonB2, and TonB3) are present in this bacterium, and the energy required for PvuA1 and PvuA2 to transport ferric vibrioferrin is provided by the TonB2 system for PvuA1 and both the TonB1 and TonB2 systems for PvuA2. V. parahaemolyticus can also utilize hydroxamate-type xenosiderophores, such as desferri-ferrichrome and aerobactin. Discontinuous lines indicate possible iron sources and iron acquisition mechanisms in V. parahaemolyticus.
Mentions: The expression of two proteolytic proteins of 43 and 90 kDa from V. parahaemolyticus were identified. Apparently the protease of 43 kDa is capable of degrading Hb and it has been speculated that this could be one of the strategies of V. parahaemolyticus to acquire iron from the human host (Wong and Shyu, 1994). By using the BLAST, we also identified genes that could play a role in Fe acquisition (Table 1). Although they have not reported and their biological functions have not been described, these genes likely encode proteins involved in Fe acquisition for V. parahaemolyticus in different niches. The probable functions of putative Fe acquisition genes and homologies are described in Table 1. Additionally; a schematic view of Fe acquisition systems with putative proteins used by V. parahaemolyticus is shown in Figure 3.

Bottom Line: In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor.The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin.The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico ; Departamento de Investigación, Hospital Pediátrico de Sinaloa "Dr. Rigoberto Aguilar Pico" Culiacán, Mexico.

ABSTRACT
Iron is an essential element for the growth and development of virtually all living organisms. As iron acquisition is critical for the pathogenesis, a host defense strategy during infection is to sequester iron to restrict the growth of invading pathogens. To counteract this strategy, bacteria such as Vibrio parahaemolyticus have adapted to such an environment by developing mechanisms to obtain iron from human hosts. This review focuses on the multiple strategies employed by V. parahaemolyticus to obtain nutritional iron from host sources. In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor. The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin. The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.

No MeSH data available.


Related in: MedlinePlus