Limits...
Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization.

León-Sicairos N, Angulo-Zamudio UA, de la Garza M, Velázquez-Román J, Flores-Villaseñor HM, Canizalez-Román A - Front Microbiol (2015)

Bottom Line: In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor.The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin.The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico ; Departamento de Investigación, Hospital Pediátrico de Sinaloa "Dr. Rigoberto Aguilar Pico" Culiacán, Mexico.

ABSTRACT
Iron is an essential element for the growth and development of virtually all living organisms. As iron acquisition is critical for the pathogenesis, a host defense strategy during infection is to sequester iron to restrict the growth of invading pathogens. To counteract this strategy, bacteria such as Vibrio parahaemolyticus have adapted to such an environment by developing mechanisms to obtain iron from human hosts. This review focuses on the multiple strategies employed by V. parahaemolyticus to obtain nutritional iron from host sources. In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor. The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin. The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.

No MeSH data available.


Related in: MedlinePlus

Iron acquisition systems used by bacteria that infect humans. Iron (Fe) is an essential element for virtually all forms of cellular life, including most bacteria, because it serves as a cofactor for several key enzymes required for many metabolic processes. Gram-negative and Gram-positive bacteria can acquire iron using elaborated mechanisms. (1) Receptors for host iron-containing proteins. (2) The production and secretion of siderophores/hemophores. (3) Ferrireductases/Proteases. The abilities of bacterial pathogens to adapt to the environment within a host are essential to their virulence.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496571&req=5

Figure 2: Iron acquisition systems used by bacteria that infect humans. Iron (Fe) is an essential element for virtually all forms of cellular life, including most bacteria, because it serves as a cofactor for several key enzymes required for many metabolic processes. Gram-negative and Gram-positive bacteria can acquire iron using elaborated mechanisms. (1) Receptors for host iron-containing proteins. (2) The production and secretion of siderophores/hemophores. (3) Ferrireductases/Proteases. The abilities of bacterial pathogens to adapt to the environment within a host are essential to their virulence.

Mentions: Some microorganisms secrete ferrireductases or produce membrane-associated proteins that reduce the ferric iron in holoTf, holoLf, or ferritin to the more accessible ferrous form. The reduction of ferric iron destabilizes the host iron-containing protein, and the ferrous iron is thus released. It has been reported that some pathogens are able to produce and secrete proteases that cleave host iron-containing proteins, and iron is easily acquired by pathogens in this form, for example, Entamoeba histoytica has hemoglobinases (Payne, 1993; Serrano-Luna et al., 1998; Ortiz-Estrada et al., 2012). A scheme for Fe acquisition systems in bacteria is represented in Figure 2.


Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization.

León-Sicairos N, Angulo-Zamudio UA, de la Garza M, Velázquez-Román J, Flores-Villaseñor HM, Canizalez-Román A - Front Microbiol (2015)

Iron acquisition systems used by bacteria that infect humans. Iron (Fe) is an essential element for virtually all forms of cellular life, including most bacteria, because it serves as a cofactor for several key enzymes required for many metabolic processes. Gram-negative and Gram-positive bacteria can acquire iron using elaborated mechanisms. (1) Receptors for host iron-containing proteins. (2) The production and secretion of siderophores/hemophores. (3) Ferrireductases/Proteases. The abilities of bacterial pathogens to adapt to the environment within a host are essential to their virulence.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496571&req=5

Figure 2: Iron acquisition systems used by bacteria that infect humans. Iron (Fe) is an essential element for virtually all forms of cellular life, including most bacteria, because it serves as a cofactor for several key enzymes required for many metabolic processes. Gram-negative and Gram-positive bacteria can acquire iron using elaborated mechanisms. (1) Receptors for host iron-containing proteins. (2) The production and secretion of siderophores/hemophores. (3) Ferrireductases/Proteases. The abilities of bacterial pathogens to adapt to the environment within a host are essential to their virulence.
Mentions: Some microorganisms secrete ferrireductases or produce membrane-associated proteins that reduce the ferric iron in holoTf, holoLf, or ferritin to the more accessible ferrous form. The reduction of ferric iron destabilizes the host iron-containing protein, and the ferrous iron is thus released. It has been reported that some pathogens are able to produce and secrete proteases that cleave host iron-containing proteins, and iron is easily acquired by pathogens in this form, for example, Entamoeba histoytica has hemoglobinases (Payne, 1993; Serrano-Luna et al., 1998; Ortiz-Estrada et al., 2012). A scheme for Fe acquisition systems in bacteria is represented in Figure 2.

Bottom Line: In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor.The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin.The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico ; Departamento de Investigación, Hospital Pediátrico de Sinaloa "Dr. Rigoberto Aguilar Pico" Culiacán, Mexico.

ABSTRACT
Iron is an essential element for the growth and development of virtually all living organisms. As iron acquisition is critical for the pathogenesis, a host defense strategy during infection is to sequester iron to restrict the growth of invading pathogens. To counteract this strategy, bacteria such as Vibrio parahaemolyticus have adapted to such an environment by developing mechanisms to obtain iron from human hosts. This review focuses on the multiple strategies employed by V. parahaemolyticus to obtain nutritional iron from host sources. In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor. The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin. The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.

No MeSH data available.


Related in: MedlinePlus