Limits...
Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection.

Curto M, Krajinski F, Schlereth A, Rubiales D - Front Plant Sci (2015)

Bottom Line: Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown.Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense.Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research Council Córdoba, Spain.

ABSTRACT
Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

No MeSH data available.


Related in: MedlinePlus

A model for the regulatory network that controls the expression ofE. Pisi-induced TF genes (p= 0.05; −0.7 ≥ m ≥ 0.7) in Parabinga (PB; diamond) and SA1306 (SA; square)M. truncatulagenotypes. Solid diamonds and solid squares indicate the TF genes regulated in Parabinga and SA1306, respectively. The TF genes that were regulated in both genotypes are indicated by solid spheres. Up- and down-regulation are indicated by red and green lines, respectively. The colors of the solid diamonds, solid squares, and solid spheres indicate TF families: Green (bHLH); black (HD family; HD-Like; MYB; MYB/HD-like); orange (ARF; GRAS); red (AP2/ERBP; WRKY); blue (Zn-fingers TF families; bZIP); olive green (FHA; NAC); violet (RR); pink (SBP; BTB/POZ); gray (HMG; HTH); brown (E2F; DDT); sky-blue (LIM; PHD); pea green (JUMONJI; ARID); dark pink (AUX/IAA; MADS). A detailed description of these genes is shown in Table S2.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496563&req=5

Figure 4: A model for the regulatory network that controls the expression ofE. Pisi-induced TF genes (p= 0.05; −0.7 ≥ m ≥ 0.7) in Parabinga (PB; diamond) and SA1306 (SA; square)M. truncatulagenotypes. Solid diamonds and solid squares indicate the TF genes regulated in Parabinga and SA1306, respectively. The TF genes that were regulated in both genotypes are indicated by solid spheres. Up- and down-regulation are indicated by red and green lines, respectively. The colors of the solid diamonds, solid squares, and solid spheres indicate TF families: Green (bHLH); black (HD family; HD-Like; MYB; MYB/HD-like); orange (ARF; GRAS); red (AP2/ERBP; WRKY); blue (Zn-fingers TF families; bZIP); olive green (FHA; NAC); violet (RR); pink (SBP; BTB/POZ); gray (HMG; HTH); brown (E2F; DDT); sky-blue (LIM; PHD); pea green (JUMONJI; ARID); dark pink (AUX/IAA; MADS). A detailed description of these genes is shown in Table S2.

Mentions: Around 80% of TF genes (79/95 genes) that showed statistically significant differences (P < 0.05) had at least a 1.6-fold change in transcript accumulation (−0.7 ≥ m ≥ 0.7) (Table S2). To study the regulatory network controlling the expression and interactions of these 79 genes during E. pisi infection, we further analyzed their expression in the susceptible Parabinga and the resistant SA1306 genotypes (Figure 4).


Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection.

Curto M, Krajinski F, Schlereth A, Rubiales D - Front Plant Sci (2015)

A model for the regulatory network that controls the expression ofE. Pisi-induced TF genes (p= 0.05; −0.7 ≥ m ≥ 0.7) in Parabinga (PB; diamond) and SA1306 (SA; square)M. truncatulagenotypes. Solid diamonds and solid squares indicate the TF genes regulated in Parabinga and SA1306, respectively. The TF genes that were regulated in both genotypes are indicated by solid spheres. Up- and down-regulation are indicated by red and green lines, respectively. The colors of the solid diamonds, solid squares, and solid spheres indicate TF families: Green (bHLH); black (HD family; HD-Like; MYB; MYB/HD-like); orange (ARF; GRAS); red (AP2/ERBP; WRKY); blue (Zn-fingers TF families; bZIP); olive green (FHA; NAC); violet (RR); pink (SBP; BTB/POZ); gray (HMG; HTH); brown (E2F; DDT); sky-blue (LIM; PHD); pea green (JUMONJI; ARID); dark pink (AUX/IAA; MADS). A detailed description of these genes is shown in Table S2.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496563&req=5

Figure 4: A model for the regulatory network that controls the expression ofE. Pisi-induced TF genes (p= 0.05; −0.7 ≥ m ≥ 0.7) in Parabinga (PB; diamond) and SA1306 (SA; square)M. truncatulagenotypes. Solid diamonds and solid squares indicate the TF genes regulated in Parabinga and SA1306, respectively. The TF genes that were regulated in both genotypes are indicated by solid spheres. Up- and down-regulation are indicated by red and green lines, respectively. The colors of the solid diamonds, solid squares, and solid spheres indicate TF families: Green (bHLH); black (HD family; HD-Like; MYB; MYB/HD-like); orange (ARF; GRAS); red (AP2/ERBP; WRKY); blue (Zn-fingers TF families; bZIP); olive green (FHA; NAC); violet (RR); pink (SBP; BTB/POZ); gray (HMG; HTH); brown (E2F; DDT); sky-blue (LIM; PHD); pea green (JUMONJI; ARID); dark pink (AUX/IAA; MADS). A detailed description of these genes is shown in Table S2.
Mentions: Around 80% of TF genes (79/95 genes) that showed statistically significant differences (P < 0.05) had at least a 1.6-fold change in transcript accumulation (−0.7 ≥ m ≥ 0.7) (Table S2). To study the regulatory network controlling the expression and interactions of these 79 genes during E. pisi infection, we further analyzed their expression in the susceptible Parabinga and the resistant SA1306 genotypes (Figure 4).

Bottom Line: Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown.Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense.Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research Council Córdoba, Spain.

ABSTRACT
Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

No MeSH data available.


Related in: MedlinePlus