Limits...
Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection.

Curto M, Krajinski F, Schlereth A, Rubiales D - Front Plant Sci (2015)

Bottom Line: Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown.Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense.Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research Council Córdoba, Spain.

ABSTRACT
Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

No MeSH data available.


Related in: MedlinePlus

Heat map expression profiles of TF genes. Heat map showing expression profiles of 95 genes that were differentially expressed in Parabinga (PB) and SA1306 (SA) M. truncatula genotypes in response to E. Pisi infection. Genes were considered differentially expressed if they met the prerequisites p ≤ 0.05 and m ≤ −0.7 or m ≥ 0.7. Up-regulation (m ≥ 0.7) is indicated in red; down-regulation (m ≤ −0.7) in green; black indicates no differential expression (−0.7 ≤ m ≤ 0.7). The heat map expression profiles are grouped by yellow rectangles (I–X). Additional information is available in Table 1.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496563&req=5

Figure 2: Heat map expression profiles of TF genes. Heat map showing expression profiles of 95 genes that were differentially expressed in Parabinga (PB) and SA1306 (SA) M. truncatula genotypes in response to E. Pisi infection. Genes were considered differentially expressed if they met the prerequisites p ≤ 0.05 and m ≤ −0.7 or m ≥ 0.7. Up-regulation (m ≥ 0.7) is indicated in red; down-regulation (m ≤ −0.7) in green; black indicates no differential expression (−0.7 ≤ m ≤ 0.7). The heat map expression profiles are grouped by yellow rectangles (I–X). Additional information is available in Table 1.

Mentions: We analyzed and compared the expression patterns of TF genes in the susceptible cv. Parabinga and the resistant SA1306 genotypes at 4 h after E. pisi inoculation (Figure S1). A total of 623 genes of the qPCR TF platform (59.6%) were considered detected (Cq < 40; n ≥ 2) and 95 showed statistically significant differences (P < 0.05) upon E. pisi infection in SA1306 and Parabinga genotypes. The relative gene expression ratios (m), log2expression ratios inoculated/control after E. pisi inoculation, were calculated for all TF genes. TF genes were considered to be differentially up- or down-regulated in response to E. pisi infection, if they met the prerequisites p ≤ 0.05 and m ≥ 0.7 or m ≤ −0.7, respectively. We studied the expression pattern of these genes that showed statistically significant differences through a hierarchical clustering analysis based on gene expression profiles (Figure 2, Table 1).


Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection.

Curto M, Krajinski F, Schlereth A, Rubiales D - Front Plant Sci (2015)

Heat map expression profiles of TF genes. Heat map showing expression profiles of 95 genes that were differentially expressed in Parabinga (PB) and SA1306 (SA) M. truncatula genotypes in response to E. Pisi infection. Genes were considered differentially expressed if they met the prerequisites p ≤ 0.05 and m ≤ −0.7 or m ≥ 0.7. Up-regulation (m ≥ 0.7) is indicated in red; down-regulation (m ≤ −0.7) in green; black indicates no differential expression (−0.7 ≤ m ≤ 0.7). The heat map expression profiles are grouped by yellow rectangles (I–X). Additional information is available in Table 1.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496563&req=5

Figure 2: Heat map expression profiles of TF genes. Heat map showing expression profiles of 95 genes that were differentially expressed in Parabinga (PB) and SA1306 (SA) M. truncatula genotypes in response to E. Pisi infection. Genes were considered differentially expressed if they met the prerequisites p ≤ 0.05 and m ≤ −0.7 or m ≥ 0.7. Up-regulation (m ≥ 0.7) is indicated in red; down-regulation (m ≤ −0.7) in green; black indicates no differential expression (−0.7 ≤ m ≤ 0.7). The heat map expression profiles are grouped by yellow rectangles (I–X). Additional information is available in Table 1.
Mentions: We analyzed and compared the expression patterns of TF genes in the susceptible cv. Parabinga and the resistant SA1306 genotypes at 4 h after E. pisi inoculation (Figure S1). A total of 623 genes of the qPCR TF platform (59.6%) were considered detected (Cq < 40; n ≥ 2) and 95 showed statistically significant differences (P < 0.05) upon E. pisi infection in SA1306 and Parabinga genotypes. The relative gene expression ratios (m), log2expression ratios inoculated/control after E. pisi inoculation, were calculated for all TF genes. TF genes were considered to be differentially up- or down-regulated in response to E. pisi infection, if they met the prerequisites p ≤ 0.05 and m ≥ 0.7 or m ≤ −0.7, respectively. We studied the expression pattern of these genes that showed statistically significant differences through a hierarchical clustering analysis based on gene expression profiles (Figure 2, Table 1).

Bottom Line: Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown.Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense.Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research Council Córdoba, Spain.

ABSTRACT
Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

No MeSH data available.


Related in: MedlinePlus