Limits...
Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection.

Curto M, Krajinski F, Schlereth A, Rubiales D - Front Plant Sci (2015)

Bottom Line: Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown.Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense.Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research Council Córdoba, Spain.

ABSTRACT
Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

No MeSH data available.


Related in: MedlinePlus

Evaluation of candidate reference genes analyzed using geNorm software. Expression stability (A) and pair-wise variation (B) plots for the eight reference genes studied. A lower M value indicates a more stable expression. The pair-wise variation (V) values indicate the optimal number of reference genes.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496563&req=5

Figure 1: Evaluation of candidate reference genes analyzed using geNorm software. Expression stability (A) and pair-wise variation (B) plots for the eight reference genes studied. A lower M value indicates a more stable expression. The pair-wise variation (V) values indicate the optimal number of reference genes.

Mentions: Eight reference genes were studied to determine those best suited for transcript normalization. Transcripts levels of all reference genes were calculated, in each cDNA sample, using the average expression stability (M) calculated by geNorm software (Figure 1A). All reference genes showed high average expression stability (M < 0.66) among them the UBC9, Helicase, PTB, and UPL7 reference genes showed the lower average expression stability (M) indicating a greater transcript stability (Figure 1A). Pair-wise variation (V) was also calculated as described by Vandesompele et al. (2002) allowing determining the optimal number of stable reference genes. The results indicated that the inclusion of a third gene (V3/4) or more genes (V4/5, V5/6,V6/7, and V7/8) has no significant effect (Figure 1B). Therefore, we selected UBC9 and Helicase as the best reference genes for this experiment, which were used for transcript normalization of the analyzed TF genes.


Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection.

Curto M, Krajinski F, Schlereth A, Rubiales D - Front Plant Sci (2015)

Evaluation of candidate reference genes analyzed using geNorm software. Expression stability (A) and pair-wise variation (B) plots for the eight reference genes studied. A lower M value indicates a more stable expression. The pair-wise variation (V) values indicate the optimal number of reference genes.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496563&req=5

Figure 1: Evaluation of candidate reference genes analyzed using geNorm software. Expression stability (A) and pair-wise variation (B) plots for the eight reference genes studied. A lower M value indicates a more stable expression. The pair-wise variation (V) values indicate the optimal number of reference genes.
Mentions: Eight reference genes were studied to determine those best suited for transcript normalization. Transcripts levels of all reference genes were calculated, in each cDNA sample, using the average expression stability (M) calculated by geNorm software (Figure 1A). All reference genes showed high average expression stability (M < 0.66) among them the UBC9, Helicase, PTB, and UPL7 reference genes showed the lower average expression stability (M) indicating a greater transcript stability (Figure 1A). Pair-wise variation (V) was also calculated as described by Vandesompele et al. (2002) allowing determining the optimal number of stable reference genes. The results indicated that the inclusion of a third gene (V3/4) or more genes (V4/5, V5/6,V6/7, and V7/8) has no significant effect (Figure 1B). Therefore, we selected UBC9 and Helicase as the best reference genes for this experiment, which were used for transcript normalization of the analyzed TF genes.

Bottom Line: Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown.Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense.Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research Council Córdoba, Spain.

ABSTRACT
Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

No MeSH data available.


Related in: MedlinePlus