Limits...
Face perception and processing in early infancy: inborn predispositions and developmental changes.

Simion F, Giorgio ED - Front Psychol (2015)

Bottom Line: From birth it is critical for our survival to identify social agents and conspecifics.Among others stimuli, faces provide the required information.In addition, the emergence of the functional and neural specialization for face processing as an experience-dependent process will be documented.

View Article: PubMed Central - PubMed

Affiliation: Department of Developmental and Social Psychology, University of Padova , Padova, Italy ; Center for Cognitive Neuroscience, University of Padova , Padova, Italy.

ABSTRACT
From birth it is critical for our survival to identify social agents and conspecifics. Among others stimuli, faces provide the required information. The present paper will review the mechanisms subserving face detection and face recognition, respectively, over development. In addition, the emergence of the functional and neural specialization for face processing as an experience-dependent process will be documented. Overall, the present work highlights the importance of both inborn predispositions and the exposure to certain experiences, shortly after birth, to drive the system to become functionally specialized to process faces in the first months of life.

No MeSH data available.


Related in: MedlinePlus

Examples of stimuli employed by to test the role of general structural properties in face preference. (A,B) stimuli used to test up-down asymmetry (Simion et al., 2002; Turati et al., 2002); (C) real faces employed to test up-down asymmetry (Macchi Cassia et al., 2004); (D–F) stimuli used to test congruency (Macchi Cassia et al., 2008); (G) real faces employed to test up-down asymmetry and congruency (Macchi Cassia et al., 2004).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496551&req=5

Figure 1: Examples of stimuli employed by to test the role of general structural properties in face preference. (A,B) stimuli used to test up-down asymmetry (Simion et al., 2002; Turati et al., 2002); (C) real faces employed to test up-down asymmetry (Macchi Cassia et al., 2004); (D–F) stimuli used to test congruency (Macchi Cassia et al., 2008); (G) real faces employed to test up-down asymmetry and congruency (Macchi Cassia et al., 2004).

Mentions: Data from our lab showed that at least two non-specific structural properties can elicit newborns’ preference both for faces (Turati et al., 2002; Macchi Cassia et al., 2004) and geometric configurations (Macchi Cassia et al., 2002, 2008; Simion et al., 2002). A first property, termed up-down asymmetry (or top-heaviness), “is defined by the presence of higher stimulus density in the upper than in the lower part of the configuration” (Simion et al., 2002; Turati et al., 2002; Macchi Cassia et al., 2004). In effect, newborns preferred geometrical stimuli with more elements in the upper part when contrasted with the upside-down version of them (Simion et al., 2002 see Figure 1A). The same results were replicated with face-like stimuli (Turati et al., 2002, see Figure 1B) and with real faces (Macchi Cassia et al., 2004, see Figure 1C) in which the geometry of the face was disrupted. These data suggest that this up-down asymmetry, if compared with the face geometry or face structure, is the critical factor in eliciting newborns’ preference. This visual preference for configurations with more elements in the upper part may originate from an upper-field advantage in visual sensitivity that renders those configurations more easily detectable (Simion et al., 2002). This sensitivity is attributed to the fact that a major role in visual exploration of the upper visual field is played by the superior colliculus (Sprague et al., 1973), which is thought to affect preeminently newborns’ visual behavior (Atkinson et al., 1992).


Face perception and processing in early infancy: inborn predispositions and developmental changes.

Simion F, Giorgio ED - Front Psychol (2015)

Examples of stimuli employed by to test the role of general structural properties in face preference. (A,B) stimuli used to test up-down asymmetry (Simion et al., 2002; Turati et al., 2002); (C) real faces employed to test up-down asymmetry (Macchi Cassia et al., 2004); (D–F) stimuli used to test congruency (Macchi Cassia et al., 2008); (G) real faces employed to test up-down asymmetry and congruency (Macchi Cassia et al., 2004).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496551&req=5

Figure 1: Examples of stimuli employed by to test the role of general structural properties in face preference. (A,B) stimuli used to test up-down asymmetry (Simion et al., 2002; Turati et al., 2002); (C) real faces employed to test up-down asymmetry (Macchi Cassia et al., 2004); (D–F) stimuli used to test congruency (Macchi Cassia et al., 2008); (G) real faces employed to test up-down asymmetry and congruency (Macchi Cassia et al., 2004).
Mentions: Data from our lab showed that at least two non-specific structural properties can elicit newborns’ preference both for faces (Turati et al., 2002; Macchi Cassia et al., 2004) and geometric configurations (Macchi Cassia et al., 2002, 2008; Simion et al., 2002). A first property, termed up-down asymmetry (or top-heaviness), “is defined by the presence of higher stimulus density in the upper than in the lower part of the configuration” (Simion et al., 2002; Turati et al., 2002; Macchi Cassia et al., 2004). In effect, newborns preferred geometrical stimuli with more elements in the upper part when contrasted with the upside-down version of them (Simion et al., 2002 see Figure 1A). The same results were replicated with face-like stimuli (Turati et al., 2002, see Figure 1B) and with real faces (Macchi Cassia et al., 2004, see Figure 1C) in which the geometry of the face was disrupted. These data suggest that this up-down asymmetry, if compared with the face geometry or face structure, is the critical factor in eliciting newborns’ preference. This visual preference for configurations with more elements in the upper part may originate from an upper-field advantage in visual sensitivity that renders those configurations more easily detectable (Simion et al., 2002). This sensitivity is attributed to the fact that a major role in visual exploration of the upper visual field is played by the superior colliculus (Sprague et al., 1973), which is thought to affect preeminently newborns’ visual behavior (Atkinson et al., 1992).

Bottom Line: From birth it is critical for our survival to identify social agents and conspecifics.Among others stimuli, faces provide the required information.In addition, the emergence of the functional and neural specialization for face processing as an experience-dependent process will be documented.

View Article: PubMed Central - PubMed

Affiliation: Department of Developmental and Social Psychology, University of Padova , Padova, Italy ; Center for Cognitive Neuroscience, University of Padova , Padova, Italy.

ABSTRACT
From birth it is critical for our survival to identify social agents and conspecifics. Among others stimuli, faces provide the required information. The present paper will review the mechanisms subserving face detection and face recognition, respectively, over development. In addition, the emergence of the functional and neural specialization for face processing as an experience-dependent process will be documented. Overall, the present work highlights the importance of both inborn predispositions and the exposure to certain experiences, shortly after birth, to drive the system to become functionally specialized to process faces in the first months of life.

No MeSH data available.


Related in: MedlinePlus