Inactivation of bone morphogenetic protein 2 may predict clinical outcome and poor overall survival for renal cell carcinoma through epigenetic pathways.
Bottom Line:
The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples.Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors.Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC.
View Article:
PubMed Central - PubMed
Affiliation: Department of Urology, Shimane University Faculty of Medicine, Enya-cho, Izumo, Japan.
ABSTRACT
We investigated whether impaired regulation of bone morphogenetic protein-2 (BMP-2) via epigenetic pathways is associated with renal cell carcinoma (RCC) pathogenesis. Expression and CpG methylation of the BMP-2 gene were analyzed using RCC cell lines, and 96 matched RCC and normal renal tissues. We also performed functional analysis using BMP-2 restored RCC cells. A significant association of BMP-2 mRNA expression was also found with advanced tumor stage and lymph node involvement, while lower BMP-2 mRNA expression was significantly associated with poor overall survival after radical nephrectomy. In RCC cells, BMP-2 restoration significantly inhibited cell proliferation, migration, invasion, and colony formation. In addition, BMP-2 overexpression induced p21(WAF1/CIP1) and p27(KIP1) expression, and cellular apoptosis in RCC cells. BMP-2 mRNA expression was significantly enhanced in RCC cells by 5-aza-2'-deoxycitidine treatment. The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples. Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors. Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC. No MeSH data available. Related in: MedlinePlus |
![]() Related In:
Results -
Collection
License getmorefigures.php?uid=PMC4496240&req=5
Figure 4: Effects of BMP-2 overexpression on cell proliferation, migration, invasion, and colony-formation(A) BMP-2 expression level in RCC cell lines (Caki-1, Caki-2) were determined by immunoblotting analysis at 48 hours after transfection of a plasmid containing human BMP-2. (B) Cell viability was analyzed using an MTS cell proliferation assay at 24, 48, 72, and 96 hours after transient transfection. Overexpression of BMP-2 significantly inhibited cell viability. *P<0.05, **P<0.01. (C) Representative images from wound healing assay. After transfection (48 hours), a wound was formed by scraping, then measured 24 hours later. Over-expression of BMP-2 significantly inhibited cell migration. *P<0.0001. (D) Representative images from invasion assay. Overexpression of BMP-2 resulted in significantly decreased cell invasion. *P<0.0001. (E) Overexpression of BMP-2 significantly inhibited colony formation ability. *P<0.01. Mentions: After transient transfection of a plasmid containing human BMP-2 into Caki-1 and Caki-2 cells, significant amounts of BMP-2 protein were detected by Western blotting (Fig. 4A). Cell proliferation (Fig. 4B) and wound healing (Fig. 4C) results demonstrated significant inhibition with BMP-2 transfectants for both Caki-1 and Caki-2 cells as compared to the control vector transfectants. Matrigel invasion assay also showed that the number of invaded cells was significantly decreased in the BMP-2 transfectants as compared with their control counterparts (Fig. 4D). In addition, overexpression of BMP-2 inhibited colony-formation in both Caki-1 and Caki-2 cells (Fig. 4E). Thus, these results suggest that BMP-2 plays an important role in RCC progression. |
View Article: PubMed Central - PubMed
Affiliation: Department of Urology, Shimane University Faculty of Medicine, Enya-cho, Izumo, Japan.
No MeSH data available.