Limits...
A novel small-form NEDD4 regulates cell invasiveness and apoptosis to promote tumor metastasis.

Liao CJ, Chi HC, Tsai CY, Chen CD, Wu SM, Tseng YH, Lin YH, Chung IH, Chen CY, Lin SL, Huang SF, Huang YH, Lin KH - Oncotarget (2015)

Bottom Line: A small form of Neural precursor cell-expressed developmentally downregulated 4 (sNEDD4) was identified to be overexpressed in SKM cells, which was confirmed as a novel transcript using liquid chromatography-mass spectrometry.In conclusion, sNEDD4 is a novel metastasis-associated gene, which prevents apoptosis under nutrient restriction conditions.The present findings clearly support the prognostic potential of sNEDD4 for HCC.

View Article: PubMed Central - PubMed

Affiliation: Department of Biochemistry, Chang-Gung University, Taoyuan, Taiwan 333, Republic of China.

ABSTRACT
Despite numerous investigations on metastasis, the determinants of metastatic processes remain unclear. We aimed to identify the metastasis-associated genes in hepatocellular carcinoma (HCC). Potent metastatic SK-hep-1 (SK) cells, designated 'SKM', were generated using Transwell assay followed by selection in a mouse model. Genes expressed differentially in SKM and SK cells were identified via microarray analyses. A small form of Neural precursor cell-expressed developmentally downregulated 4 (sNEDD4) was identified to be overexpressed in SKM cells, which was confirmed as a novel transcript using liquid chromatography-mass spectrometry. In clinical specimens, sNEDD4 was significantly overexpressed in tumors and serves as a poor prognostic factor for male patients with HCC (P = 0.035). Upon subcutaneous introduction of sNEDD4-overexpressing SK cells into flanks of nude mice, tumors grew faster than those of the control group. Furthermore, sNEDD4-mediated promotion of tumor metastasis was demonstrated in the orthotopic mouse model. Overexpression of sNEDD4 increased the invasive ability of SK cells through upregulation of matrix metalloproteinase 9 and inhibited serum deprivation-induced apoptosis via upregulation of myeloid cell leukemia 1. In conclusion, sNEDD4 is a novel metastasis-associated gene, which prevents apoptosis under nutrient restriction conditions. The present findings clearly support the prognostic potential of sNEDD4 for HCC.

No MeSH data available.


Related in: MedlinePlus

sNEDD4 promotes tumor invasion through MMP9(A) MMPs protein levels and activities were determined using Western blot (upper) and gelatin zymography (lower) analyses. (B) Invasion abilities of sN1 cells infected with LacZ shRNA (shLacZ) or MMP9 shRNA (shMMP9) were determined with the Transwell invasion assay, and the corresponding MMP9 activities shown in panel (C) Western blot (D) and gelatin zymography (E) were performed with proteins extracted from primary tumors of orthotopic mouse model.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496221&req=5

Figure 5: sNEDD4 promotes tumor invasion through MMP9(A) MMPs protein levels and activities were determined using Western blot (upper) and gelatin zymography (lower) analyses. (B) Invasion abilities of sN1 cells infected with LacZ shRNA (shLacZ) or MMP9 shRNA (shMMP9) were determined with the Transwell invasion assay, and the corresponding MMP9 activities shown in panel (C) Western blot (D) and gelatin zymography (E) were performed with proteins extracted from primary tumors of orthotopic mouse model.

Mentions: Since matrix metalloproteinase (MMP) 2 and MMP9 are significantly related to invasion, protease properties were additionally determined using Western blot and gelatin zymography. As shown in Figure 5A, MMP9, but not MMP2, protein (upper panel) and activities (lower panel) were increased in stable sNEDD4-overexpressing cells. Moreover, the invasive ability of sN1 cells was decreased upon infection of cells with MMP9 shRNA (shMMP9, TRCN0000373061) expression virus (Figure 5B and 5C). MMP9 expression levels (Figure 5D) and activities (Figure 5E) of orthotopic primary tumors were additionally determined. sNEDD4-overexpressing tumors showed higher gelatin metalloproteinase enzyme (MMP9 or MMP2) levels and activities than control tumors. These findings collectively support that activation of MMP9 serves as one of the mechanisms underlying sNEDD4 regulated tumor metastasis.


A novel small-form NEDD4 regulates cell invasiveness and apoptosis to promote tumor metastasis.

Liao CJ, Chi HC, Tsai CY, Chen CD, Wu SM, Tseng YH, Lin YH, Chung IH, Chen CY, Lin SL, Huang SF, Huang YH, Lin KH - Oncotarget (2015)

sNEDD4 promotes tumor invasion through MMP9(A) MMPs protein levels and activities were determined using Western blot (upper) and gelatin zymography (lower) analyses. (B) Invasion abilities of sN1 cells infected with LacZ shRNA (shLacZ) or MMP9 shRNA (shMMP9) were determined with the Transwell invasion assay, and the corresponding MMP9 activities shown in panel (C) Western blot (D) and gelatin zymography (E) were performed with proteins extracted from primary tumors of orthotopic mouse model.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496221&req=5

Figure 5: sNEDD4 promotes tumor invasion through MMP9(A) MMPs protein levels and activities were determined using Western blot (upper) and gelatin zymography (lower) analyses. (B) Invasion abilities of sN1 cells infected with LacZ shRNA (shLacZ) or MMP9 shRNA (shMMP9) were determined with the Transwell invasion assay, and the corresponding MMP9 activities shown in panel (C) Western blot (D) and gelatin zymography (E) were performed with proteins extracted from primary tumors of orthotopic mouse model.
Mentions: Since matrix metalloproteinase (MMP) 2 and MMP9 are significantly related to invasion, protease properties were additionally determined using Western blot and gelatin zymography. As shown in Figure 5A, MMP9, but not MMP2, protein (upper panel) and activities (lower panel) were increased in stable sNEDD4-overexpressing cells. Moreover, the invasive ability of sN1 cells was decreased upon infection of cells with MMP9 shRNA (shMMP9, TRCN0000373061) expression virus (Figure 5B and 5C). MMP9 expression levels (Figure 5D) and activities (Figure 5E) of orthotopic primary tumors were additionally determined. sNEDD4-overexpressing tumors showed higher gelatin metalloproteinase enzyme (MMP9 or MMP2) levels and activities than control tumors. These findings collectively support that activation of MMP9 serves as one of the mechanisms underlying sNEDD4 regulated tumor metastasis.

Bottom Line: A small form of Neural precursor cell-expressed developmentally downregulated 4 (sNEDD4) was identified to be overexpressed in SKM cells, which was confirmed as a novel transcript using liquid chromatography-mass spectrometry.In conclusion, sNEDD4 is a novel metastasis-associated gene, which prevents apoptosis under nutrient restriction conditions.The present findings clearly support the prognostic potential of sNEDD4 for HCC.

View Article: PubMed Central - PubMed

Affiliation: Department of Biochemistry, Chang-Gung University, Taoyuan, Taiwan 333, Republic of China.

ABSTRACT
Despite numerous investigations on metastasis, the determinants of metastatic processes remain unclear. We aimed to identify the metastasis-associated genes in hepatocellular carcinoma (HCC). Potent metastatic SK-hep-1 (SK) cells, designated 'SKM', were generated using Transwell assay followed by selection in a mouse model. Genes expressed differentially in SKM and SK cells were identified via microarray analyses. A small form of Neural precursor cell-expressed developmentally downregulated 4 (sNEDD4) was identified to be overexpressed in SKM cells, which was confirmed as a novel transcript using liquid chromatography-mass spectrometry. In clinical specimens, sNEDD4 was significantly overexpressed in tumors and serves as a poor prognostic factor for male patients with HCC (P = 0.035). Upon subcutaneous introduction of sNEDD4-overexpressing SK cells into flanks of nude mice, tumors grew faster than those of the control group. Furthermore, sNEDD4-mediated promotion of tumor metastasis was demonstrated in the orthotopic mouse model. Overexpression of sNEDD4 increased the invasive ability of SK cells through upregulation of matrix metalloproteinase 9 and inhibited serum deprivation-induced apoptosis via upregulation of myeloid cell leukemia 1. In conclusion, sNEDD4 is a novel metastasis-associated gene, which prevents apoptosis under nutrient restriction conditions. The present findings clearly support the prognostic potential of sNEDD4 for HCC.

No MeSH data available.


Related in: MedlinePlus