Limits...
Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms.

Ochoa-Alvarez JA, Krishnan H, Pastorino JG, Nevel E, Kephart D, Lee JJ, Retzbach EP, Shen Y, Fatahzadeh M, Baredes S, Kalyoussef E, Honma M, Adelson ME, Kaneko MK, Kato Y, Young MA, Deluca-Rapone L, Shienbaum AJ, Yin K, Jensen LD, Goldberg GS - Oncotarget (2015)

Bottom Line: Both reagents inhibited the migration of PDPN expressing OSCC cells at nanomolar concentrations before inhibiting cell viability at micromolar concentrations.In addition, both reagents induced mitochondrial membrane permeability transition to kill OSCC cells that express PDPN by caspase independent nonapoptotic necrosis.Taken together, these data suggest that antibodies and lectins may be utilized to combat OSCC and other cancers that express PDPN.

View Article: PubMed Central - PubMed

Affiliation: Departments of Molecular Biology, Cell Biology, and Pathology, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA.

ABSTRACT
Podoplanin (PDPN) is a unique transmembrane receptor that promotes tumor cell motility. Indeed, PDPN may serve as a chemotherapeutic target for primary and metastatic cancer cells, particularly oral squamous cell carcinoma (OSCC) cells that cause most oral cancers. Here, we studied how a monoclonal antibody (NZ-1) and lectin (MASL) that target PDPN affect human OSCC cell motility and viability. Both reagents inhibited the migration of PDPN expressing OSCC cells at nanomolar concentrations before inhibiting cell viability at micromolar concentrations. In addition, both reagents induced mitochondrial membrane permeability transition to kill OSCC cells that express PDPN by caspase independent nonapoptotic necrosis. Furthermore, MASL displayed a surprisingly robust ability to target PDPN on OSCC cells within minutes of exposure, and significantly inhibited human OSCC dissemination in zebrafish embryos. Moreover, we report that human OSCC cells formed tumors that expressed PDPN in mice, and induced PDPN expression in infiltrating host murine cancer associated fibroblasts. Taken together, these data suggest that antibodies and lectins may be utilized to combat OSCC and other cancers that express PDPN.

No MeSH data available.


Related in: MedlinePlus

Reagents that target PDPN can decrease OSCC cell migration and viability(a) Wound healing migration assays were performed on confluent OSCC monolayers treated with concentrations of NZ-1 or MASL as indicated. Data are shown as the number of cells that migrated into a 200 × 300 micron area along the center of the wound in 18 hours (mean+SEM, n=5). (b) NZ-1 and MASL toxicity was evaluated by Trypan blue staining of cells treated with NZ-1 or MASL for 24 hours and quantitated as the number of living cells in a 3 mm2 field (mean+SEM, n=5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496201&req=5

Figure 3: Reagents that target PDPN can decrease OSCC cell migration and viability(a) Wound healing migration assays were performed on confluent OSCC monolayers treated with concentrations of NZ-1 or MASL as indicated. Data are shown as the number of cells that migrated into a 200 × 300 micron area along the center of the wound in 18 hours (mean+SEM, n=5). (b) NZ-1 and MASL toxicity was evaluated by Trypan blue staining of cells treated with NZ-1 or MASL for 24 hours and quantitated as the number of living cells in a 3 mm2 field (mean+SEM, n=5).

Mentions: Previous studies indicate that antibodies and lectins can be used to target PDPN in order to inhibit tumor cell migration and growth. These reagents are exemplified by NZ-1 antibody and MASL lectin [45, 61-64]. We utilized HSC-2, HSC-4, and HSQ-89 cells to evaluate the effects of NZ-1 and MASL on cell migration. As shown in Figure 3a and Supplemental Figure 1, MASL and NZ-1 both inhibited OSCC cell migration at nanomolar concentrations. Migration of HSC-2 cells, which expressed the highest levels of PDPN, was effectively inhibited by 770 nM NZ-1 and MASL. HSC-4 cell migration was effectively inhibited by 770 nM NZ-1, but required 1540 nM MASL to achieve similar results. Neither MASL nor NZ-1 showed significant effects on HSQ-89 cells, which exhibited only nominal migration and PDPN expression levels. These data indicate that NZ-1 and MASL both inhibit cell migration in a manner that correlates with PDPN expression.


Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms.

Ochoa-Alvarez JA, Krishnan H, Pastorino JG, Nevel E, Kephart D, Lee JJ, Retzbach EP, Shen Y, Fatahzadeh M, Baredes S, Kalyoussef E, Honma M, Adelson ME, Kaneko MK, Kato Y, Young MA, Deluca-Rapone L, Shienbaum AJ, Yin K, Jensen LD, Goldberg GS - Oncotarget (2015)

Reagents that target PDPN can decrease OSCC cell migration and viability(a) Wound healing migration assays were performed on confluent OSCC monolayers treated with concentrations of NZ-1 or MASL as indicated. Data are shown as the number of cells that migrated into a 200 × 300 micron area along the center of the wound in 18 hours (mean+SEM, n=5). (b) NZ-1 and MASL toxicity was evaluated by Trypan blue staining of cells treated with NZ-1 or MASL for 24 hours and quantitated as the number of living cells in a 3 mm2 field (mean+SEM, n=5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496201&req=5

Figure 3: Reagents that target PDPN can decrease OSCC cell migration and viability(a) Wound healing migration assays were performed on confluent OSCC monolayers treated with concentrations of NZ-1 or MASL as indicated. Data are shown as the number of cells that migrated into a 200 × 300 micron area along the center of the wound in 18 hours (mean+SEM, n=5). (b) NZ-1 and MASL toxicity was evaluated by Trypan blue staining of cells treated with NZ-1 or MASL for 24 hours and quantitated as the number of living cells in a 3 mm2 field (mean+SEM, n=5).
Mentions: Previous studies indicate that antibodies and lectins can be used to target PDPN in order to inhibit tumor cell migration and growth. These reagents are exemplified by NZ-1 antibody and MASL lectin [45, 61-64]. We utilized HSC-2, HSC-4, and HSQ-89 cells to evaluate the effects of NZ-1 and MASL on cell migration. As shown in Figure 3a and Supplemental Figure 1, MASL and NZ-1 both inhibited OSCC cell migration at nanomolar concentrations. Migration of HSC-2 cells, which expressed the highest levels of PDPN, was effectively inhibited by 770 nM NZ-1 and MASL. HSC-4 cell migration was effectively inhibited by 770 nM NZ-1, but required 1540 nM MASL to achieve similar results. Neither MASL nor NZ-1 showed significant effects on HSQ-89 cells, which exhibited only nominal migration and PDPN expression levels. These data indicate that NZ-1 and MASL both inhibit cell migration in a manner that correlates with PDPN expression.

Bottom Line: Both reagents inhibited the migration of PDPN expressing OSCC cells at nanomolar concentrations before inhibiting cell viability at micromolar concentrations.In addition, both reagents induced mitochondrial membrane permeability transition to kill OSCC cells that express PDPN by caspase independent nonapoptotic necrosis.Taken together, these data suggest that antibodies and lectins may be utilized to combat OSCC and other cancers that express PDPN.

View Article: PubMed Central - PubMed

Affiliation: Departments of Molecular Biology, Cell Biology, and Pathology, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA.

ABSTRACT
Podoplanin (PDPN) is a unique transmembrane receptor that promotes tumor cell motility. Indeed, PDPN may serve as a chemotherapeutic target for primary and metastatic cancer cells, particularly oral squamous cell carcinoma (OSCC) cells that cause most oral cancers. Here, we studied how a monoclonal antibody (NZ-1) and lectin (MASL) that target PDPN affect human OSCC cell motility and viability. Both reagents inhibited the migration of PDPN expressing OSCC cells at nanomolar concentrations before inhibiting cell viability at micromolar concentrations. In addition, both reagents induced mitochondrial membrane permeability transition to kill OSCC cells that express PDPN by caspase independent nonapoptotic necrosis. Furthermore, MASL displayed a surprisingly robust ability to target PDPN on OSCC cells within minutes of exposure, and significantly inhibited human OSCC dissemination in zebrafish embryos. Moreover, we report that human OSCC cells formed tumors that expressed PDPN in mice, and induced PDPN expression in infiltrating host murine cancer associated fibroblasts. Taken together, these data suggest that antibodies and lectins may be utilized to combat OSCC and other cancers that express PDPN.

No MeSH data available.


Related in: MedlinePlus