Limits...
D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth.

Ma S, Jiang B, Deng W, Gu ZK, Wu FZ, Li T, Xia Y, Yang H, Ye D, Xiong Y, Guan KL - Oncotarget (2015)

Bottom Line: Cancer-associated isocitrate dehydrogenase (IDH) 1 and 2 mutations gain a new activity of reducing α-KG to produce D-2-hydroxyglutarate (D-2-HG), which is proposed to function as an oncometabolite by inhibiting α-KG dependent dioxygenases.We investigated the function of D-2-HG in tumorigenesis using IDH1 and IDH2 mutant cancer cell lines.Inhibition of D-2-HG production either by specific deletion of the mutant IDH1-R132C allele or overexpression of D-2-hydroxyglutarate dehydrogenase (D2HGDH) increases α-KG and related metabolites, restores the activity of some α-KG-dependent dioxygenases, and selectively alters gene expression.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.

ABSTRACT
Cancer-associated isocitrate dehydrogenase (IDH) 1 and 2 mutations gain a new activity of reducing α-KG to produce D-2-hydroxyglutarate (D-2-HG), which is proposed to function as an oncometabolite by inhibiting α-KG dependent dioxygenases. We investigated the function of D-2-HG in tumorigenesis using IDH1 and IDH2 mutant cancer cell lines. Inhibition of D-2-HG production either by specific deletion of the mutant IDH1-R132C allele or overexpression of D-2-hydroxyglutarate dehydrogenase (D2HGDH) increases α-KG and related metabolites, restores the activity of some α-KG-dependent dioxygenases, and selectively alters gene expression. Ablation of D-2-HG production has no significant effect on cell proliferation and migration, but strongly inhibits anchorage independent growth in vitro and tumor growth in xenografted mouse models. Our study identifies a new activity of oncometabolite D-2-HG in promoting tumorigenesis.

No MeSH data available.


Related in: MedlinePlus

Ectopic expression of D2HGDH restores the activity of several α-KG-dependent dioxygenases(A) D2HGDH overexpression promotes the maturation of Collagen Type IV. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells. In these stable cells, soluble collagen Type IV, which indicates the immature collagen, was detected by western blotting under reducing conditions with a collagen Type IV antibody. (B) D2HGDH overexpression decreases the levels of H3K9me2 and H3K9me3 in SW1353 cells, but not in HT1080 cells. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells. Levels of various histone lysine methylations were detected by western blotting with specific antibodies. Total H3 was used as a loading control. (C) D2HGDH increases genomic 5 hmC levels in TET2 expressing cells. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells, and these stable cells were transiently transfected with plasmids of wild-type TET2CD or its catalytic inactive mutant TET2CM as indicated. Forty-eight hours after transient transfection, genomic DNA was isolated, and 5 hmC was determined by dot-blot analyses. Methylene blue staining was performed to control equal DNA loading. The levels of transiently expressed Flag-tagged proteins were determined by western blot analysis (left panels).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496170&req=5

Figure 2: Ectopic expression of D2HGDH restores the activity of several α-KG-dependent dioxygenases(A) D2HGDH overexpression promotes the maturation of Collagen Type IV. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells. In these stable cells, soluble collagen Type IV, which indicates the immature collagen, was detected by western blotting under reducing conditions with a collagen Type IV antibody. (B) D2HGDH overexpression decreases the levels of H3K9me2 and H3K9me3 in SW1353 cells, but not in HT1080 cells. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells. Levels of various histone lysine methylations were detected by western blotting with specific antibodies. Total H3 was used as a loading control. (C) D2HGDH increases genomic 5 hmC levels in TET2 expressing cells. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells, and these stable cells were transiently transfected with plasmids of wild-type TET2CD or its catalytic inactive mutant TET2CM as indicated. Forty-eight hours after transient transfection, genomic DNA was isolated, and 5 hmC was determined by dot-blot analyses. Methylene blue staining was performed to control equal DNA loading. The levels of transiently expressed Flag-tagged proteins were determined by western blot analysis (left panels).

Mentions: It has previously been shown that D-2-HG can inhibit the hydroxylation and maturation of collagen type IV, leading to an increased level of soluble immature collagen type IV in brain specific IDH1-R132H knock-in mice [26]. We found that HT1080 cell produced more immature collagen type IV than SW1353 cells. Stable overexpression of D2HGDH significantly decreased the level of soluble collagen type IV in HT1080 cells, but not in SW1353 cells (Figure 2A), indicating that collagen hydroxylation in HT1080 cells is sensitive to D-2-HG. The reduction of immature collagen type IV by D2HGDH expression is consistent with an increased collagen hydroxylation activity.


D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth.

Ma S, Jiang B, Deng W, Gu ZK, Wu FZ, Li T, Xia Y, Yang H, Ye D, Xiong Y, Guan KL - Oncotarget (2015)

Ectopic expression of D2HGDH restores the activity of several α-KG-dependent dioxygenases(A) D2HGDH overexpression promotes the maturation of Collagen Type IV. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells. In these stable cells, soluble collagen Type IV, which indicates the immature collagen, was detected by western blotting under reducing conditions with a collagen Type IV antibody. (B) D2HGDH overexpression decreases the levels of H3K9me2 and H3K9me3 in SW1353 cells, but not in HT1080 cells. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells. Levels of various histone lysine methylations were detected by western blotting with specific antibodies. Total H3 was used as a loading control. (C) D2HGDH increases genomic 5 hmC levels in TET2 expressing cells. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells, and these stable cells were transiently transfected with plasmids of wild-type TET2CD or its catalytic inactive mutant TET2CM as indicated. Forty-eight hours after transient transfection, genomic DNA was isolated, and 5 hmC was determined by dot-blot analyses. Methylene blue staining was performed to control equal DNA loading. The levels of transiently expressed Flag-tagged proteins were determined by western blot analysis (left panels).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496170&req=5

Figure 2: Ectopic expression of D2HGDH restores the activity of several α-KG-dependent dioxygenases(A) D2HGDH overexpression promotes the maturation of Collagen Type IV. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells. In these stable cells, soluble collagen Type IV, which indicates the immature collagen, was detected by western blotting under reducing conditions with a collagen Type IV antibody. (B) D2HGDH overexpression decreases the levels of H3K9me2 and H3K9me3 in SW1353 cells, but not in HT1080 cells. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells. Levels of various histone lysine methylations were detected by western blotting with specific antibodies. Total H3 was used as a loading control. (C) D2HGDH increases genomic 5 hmC levels in TET2 expressing cells. Flag-tagged D2HGDH was stably overexpressed in HT1080 and SW1353 cells, and these stable cells were transiently transfected with plasmids of wild-type TET2CD or its catalytic inactive mutant TET2CM as indicated. Forty-eight hours after transient transfection, genomic DNA was isolated, and 5 hmC was determined by dot-blot analyses. Methylene blue staining was performed to control equal DNA loading. The levels of transiently expressed Flag-tagged proteins were determined by western blot analysis (left panels).
Mentions: It has previously been shown that D-2-HG can inhibit the hydroxylation and maturation of collagen type IV, leading to an increased level of soluble immature collagen type IV in brain specific IDH1-R132H knock-in mice [26]. We found that HT1080 cell produced more immature collagen type IV than SW1353 cells. Stable overexpression of D2HGDH significantly decreased the level of soluble collagen type IV in HT1080 cells, but not in SW1353 cells (Figure 2A), indicating that collagen hydroxylation in HT1080 cells is sensitive to D-2-HG. The reduction of immature collagen type IV by D2HGDH expression is consistent with an increased collagen hydroxylation activity.

Bottom Line: Cancer-associated isocitrate dehydrogenase (IDH) 1 and 2 mutations gain a new activity of reducing α-KG to produce D-2-hydroxyglutarate (D-2-HG), which is proposed to function as an oncometabolite by inhibiting α-KG dependent dioxygenases.We investigated the function of D-2-HG in tumorigenesis using IDH1 and IDH2 mutant cancer cell lines.Inhibition of D-2-HG production either by specific deletion of the mutant IDH1-R132C allele or overexpression of D-2-hydroxyglutarate dehydrogenase (D2HGDH) increases α-KG and related metabolites, restores the activity of some α-KG-dependent dioxygenases, and selectively alters gene expression.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.

ABSTRACT
Cancer-associated isocitrate dehydrogenase (IDH) 1 and 2 mutations gain a new activity of reducing α-KG to produce D-2-hydroxyglutarate (D-2-HG), which is proposed to function as an oncometabolite by inhibiting α-KG dependent dioxygenases. We investigated the function of D-2-HG in tumorigenesis using IDH1 and IDH2 mutant cancer cell lines. Inhibition of D-2-HG production either by specific deletion of the mutant IDH1-R132C allele or overexpression of D-2-hydroxyglutarate dehydrogenase (D2HGDH) increases α-KG and related metabolites, restores the activity of some α-KG-dependent dioxygenases, and selectively alters gene expression. Ablation of D-2-HG production has no significant effect on cell proliferation and migration, but strongly inhibits anchorage independent growth in vitro and tumor growth in xenografted mouse models. Our study identifies a new activity of oncometabolite D-2-HG in promoting tumorigenesis.

No MeSH data available.


Related in: MedlinePlus