Limits...
On the Potential of Surfers to Monitor Environmental Indicators in the Coastal Zone.

Brewin RJ, de Mora L, Jackson T, Brewin TG, Shutler J - PLoS ONE (2015)

Bottom Line: Coastal management aims to mitigate these pressures while augmenting the socio-economic benefits the coastal region has to offer.SST data acquired by the surfer were compared with data from an oceanographic station in the south west UK and with satellite observations.Considering surfing is a world-wide sport, our results have global implications and the approach could be expanded to other popular marine recreational activities for coastal monitoring of environmental indicators.

View Article: PubMed Central - PubMed

Affiliation: Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom; National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom.

ABSTRACT
The social and economic benefits of the coastal zone make it one of the most treasured environments on our planet. Yet it is vulnerable to increasing anthropogenic pressure and climate change. Coastal management aims to mitigate these pressures while augmenting the socio-economic benefits the coastal region has to offer. However, coastal management is challenged by inadequate sampling of key environmental indicators, partly due to issues relating to cost of data collection. Here, we investigate the use of recreational surfers as platforms to improve sampling coverage of environmental indicators in the coastal zone. We equipped a recreational surfer, based in the south west United Kingdom (UK), with a temperature sensor and Global Positioning System (GPS) device that they used when surfing for a period of one year (85 surfing sessions). The temperature sensor was used to derive estimates of sea-surface temperature (SST), an important environmental indicator, and the GPS device used to provide sample location and to extract information on surfer performance. SST data acquired by the surfer were compared with data from an oceanographic station in the south west UK and with satellite observations. Our results demonstrate: (i) high-quality SST data can be acquired by surfers using low cost sensors; and (ii) GPS data can provide information on surfing performance that may help motivate data collection by surfers. Using recent estimates of the UK surfing population, and frequency of surfer participation, we speculate around 40 million measurements on environmental indicators per year could be acquired at the UK coastline by surfers. This quantity of data is likely to enhance coastal monitoring and aid UK coastal management. Considering surfing is a world-wide sport, our results have global implications and the approach could be expanded to other popular marine recreational activities for coastal monitoring of environmental indicators.

No MeSH data available.


Study site and sampling locations with an example of GPS and temperature data collected by the surfer.(a) Shows the locations of the 85 surfing sessions in South West UK conducted during the study, overlain onto a NEODAAS AVHRR SST image taken on the 10th September 2014. (b) Shows a plot of Plymouth and surrounding waters with locations of the surfing sessions near Plymouth and of station L4 in the Western Channel Observatory, with data from the AVHRR SST image (10th September 2014). (c) Shows a plot of Wembury beach in Plymouth, with a GPS track taken by the surfer on the 13th September 2014 overlain onto AVHRR SST estimate at Wembury beach (10th September 2014). (d) Shows speed as a function of cumulative distance travelled for the GPS track taken on the 13th September 2014, with the bumps in speed indicative of the surfer riding waves. (e) Shows a plot of temperature data collected by the surfer during the surf session on the 13th September 2014.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496071&req=5

pone.0127706.g002: Study site and sampling locations with an example of GPS and temperature data collected by the surfer.(a) Shows the locations of the 85 surfing sessions in South West UK conducted during the study, overlain onto a NEODAAS AVHRR SST image taken on the 10th September 2014. (b) Shows a plot of Plymouth and surrounding waters with locations of the surfing sessions near Plymouth and of station L4 in the Western Channel Observatory, with data from the AVHRR SST image (10th September 2014). (c) Shows a plot of Wembury beach in Plymouth, with a GPS track taken by the surfer on the 13th September 2014 overlain onto AVHRR SST estimate at Wembury beach (10th September 2014). (d) Shows speed as a function of cumulative distance travelled for the GPS track taken on the 13th September 2014, with the bumps in speed indicative of the surfer riding waves. (e) Shows a plot of temperature data collected by the surfer during the surf session on the 13th September 2014.

Mentions: The tagged surfer was stationed around the coastline of South West UK (Fig 2a). Between the 5th January 2014 and the 4th January 2015 the surfer orchestrated their recreational activity 85 times at a variety of locations (Fig 2a), with 74% of the surfs (63) conducted at Wembury beach near the city of Plymouth (Fig 2b and 2c) at a near weekly temporal sampling rate. A GPS track, taken on the 13th of September 2014, is shown in Fig 2c and illustrates how the surfer switched on the GPS device (and Tidbit V2 temperature logger) in the car park at Wembury (on land) then walked down to the beach and went surfing, before walking back to the car park and uploading the GPS and temperature data. Speed from the same GPS track is plotted as a function of cumulative distance travelled in Fig 2d, with the spikes in speed indicative of the surfer riding waves. The temperature data for the same session is also plotted as a function of time (Fig 2e) and illustrates a large change in temperature between switching the sensor on at the beginning of each session and entering the water (and exiting the water prior to switching the sensor off) with relatively stable temperature readings during the period the surfer was immersed in seawater.


On the Potential of Surfers to Monitor Environmental Indicators in the Coastal Zone.

Brewin RJ, de Mora L, Jackson T, Brewin TG, Shutler J - PLoS ONE (2015)

Study site and sampling locations with an example of GPS and temperature data collected by the surfer.(a) Shows the locations of the 85 surfing sessions in South West UK conducted during the study, overlain onto a NEODAAS AVHRR SST image taken on the 10th September 2014. (b) Shows a plot of Plymouth and surrounding waters with locations of the surfing sessions near Plymouth and of station L4 in the Western Channel Observatory, with data from the AVHRR SST image (10th September 2014). (c) Shows a plot of Wembury beach in Plymouth, with a GPS track taken by the surfer on the 13th September 2014 overlain onto AVHRR SST estimate at Wembury beach (10th September 2014). (d) Shows speed as a function of cumulative distance travelled for the GPS track taken on the 13th September 2014, with the bumps in speed indicative of the surfer riding waves. (e) Shows a plot of temperature data collected by the surfer during the surf session on the 13th September 2014.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496071&req=5

pone.0127706.g002: Study site and sampling locations with an example of GPS and temperature data collected by the surfer.(a) Shows the locations of the 85 surfing sessions in South West UK conducted during the study, overlain onto a NEODAAS AVHRR SST image taken on the 10th September 2014. (b) Shows a plot of Plymouth and surrounding waters with locations of the surfing sessions near Plymouth and of station L4 in the Western Channel Observatory, with data from the AVHRR SST image (10th September 2014). (c) Shows a plot of Wembury beach in Plymouth, with a GPS track taken by the surfer on the 13th September 2014 overlain onto AVHRR SST estimate at Wembury beach (10th September 2014). (d) Shows speed as a function of cumulative distance travelled for the GPS track taken on the 13th September 2014, with the bumps in speed indicative of the surfer riding waves. (e) Shows a plot of temperature data collected by the surfer during the surf session on the 13th September 2014.
Mentions: The tagged surfer was stationed around the coastline of South West UK (Fig 2a). Between the 5th January 2014 and the 4th January 2015 the surfer orchestrated their recreational activity 85 times at a variety of locations (Fig 2a), with 74% of the surfs (63) conducted at Wembury beach near the city of Plymouth (Fig 2b and 2c) at a near weekly temporal sampling rate. A GPS track, taken on the 13th of September 2014, is shown in Fig 2c and illustrates how the surfer switched on the GPS device (and Tidbit V2 temperature logger) in the car park at Wembury (on land) then walked down to the beach and went surfing, before walking back to the car park and uploading the GPS and temperature data. Speed from the same GPS track is plotted as a function of cumulative distance travelled in Fig 2d, with the spikes in speed indicative of the surfer riding waves. The temperature data for the same session is also plotted as a function of time (Fig 2e) and illustrates a large change in temperature between switching the sensor on at the beginning of each session and entering the water (and exiting the water prior to switching the sensor off) with relatively stable temperature readings during the period the surfer was immersed in seawater.

Bottom Line: Coastal management aims to mitigate these pressures while augmenting the socio-economic benefits the coastal region has to offer.SST data acquired by the surfer were compared with data from an oceanographic station in the south west UK and with satellite observations.Considering surfing is a world-wide sport, our results have global implications and the approach could be expanded to other popular marine recreational activities for coastal monitoring of environmental indicators.

View Article: PubMed Central - PubMed

Affiliation: Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom; National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom.

ABSTRACT
The social and economic benefits of the coastal zone make it one of the most treasured environments on our planet. Yet it is vulnerable to increasing anthropogenic pressure and climate change. Coastal management aims to mitigate these pressures while augmenting the socio-economic benefits the coastal region has to offer. However, coastal management is challenged by inadequate sampling of key environmental indicators, partly due to issues relating to cost of data collection. Here, we investigate the use of recreational surfers as platforms to improve sampling coverage of environmental indicators in the coastal zone. We equipped a recreational surfer, based in the south west United Kingdom (UK), with a temperature sensor and Global Positioning System (GPS) device that they used when surfing for a period of one year (85 surfing sessions). The temperature sensor was used to derive estimates of sea-surface temperature (SST), an important environmental indicator, and the GPS device used to provide sample location and to extract information on surfer performance. SST data acquired by the surfer were compared with data from an oceanographic station in the south west UK and with satellite observations. Our results demonstrate: (i) high-quality SST data can be acquired by surfers using low cost sensors; and (ii) GPS data can provide information on surfing performance that may help motivate data collection by surfers. Using recent estimates of the UK surfing population, and frequency of surfer participation, we speculate around 40 million measurements on environmental indicators per year could be acquired at the UK coastline by surfers. This quantity of data is likely to enhance coastal monitoring and aid UK coastal management. Considering surfing is a world-wide sport, our results have global implications and the approach could be expanded to other popular marine recreational activities for coastal monitoring of environmental indicators.

No MeSH data available.