Limits...
'My Virtual Dream': Collective Neurofeedback in an Immersive Art Environment.

Kovacevic N, Ritter P, Tays W, Moreno S, McIntosh AR - PLoS ONE (2015)

Bottom Line: While human brains are specialized for complex and variable real world tasks, most neuroscience studies reduce environmental complexity, which limits the range of behaviours that can be explored.The unusually large sample size allowed us to detect unprecedented speed of learning changes in the power spectrum (~ 1 min).Besides revealing these training effects, which are relevant for BCI applications, our results validate a novel platform engaging art and science and fostering the understanding of brains under natural conditions.

View Article: PubMed Central - PubMed

Affiliation: Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada.

ABSTRACT
While human brains are specialized for complex and variable real world tasks, most neuroscience studies reduce environmental complexity, which limits the range of behaviours that can be explored. Motivated to overcome this limitation, we conducted a large-scale experiment with electroencephalography (EEG) based brain-computer interface (BCI) technology as part of an immersive multi-media science-art installation. Data from 523 participants were collected in a single night. The exploratory experiment was designed as a collective computer game where players manipulated mental states of relaxation and concentration with neurofeedback targeting modulation of relative spectral power in alpha and beta frequency ranges. Besides validating robust time-of-night effects, gender differences and distinct spectral power patterns for the two mental states, our results also show differences in neurofeedback learning outcome. The unusually large sample size allowed us to detect unprecedented speed of learning changes in the power spectrum (~ 1 min). Moreover, we found that participants' baseline brain activity predicted subsequent neurofeedback beta training, indicating state-dependent learning. Besides revealing these training effects, which are relevant for BCI applications, our results validate a novel platform engaging art and science and fostering the understanding of brains under natural conditions.

No MeSH data available.


Related in: MedlinePlus

Game timeline.Each phase of the game ended with fireworks display, size and brightness of which were determined by the performance of the participants. Total duration of the game was 6.5 min. In the Tutorial individual thresholds for alpha and beta were estimated based on guided ‘relax’ and ‘concentrate’ conditions. Participants obtained individual visual feedback on their performance to either increase alpha or beta. Solo 1 and 2 games were qualitatively identical with the tutorial, however individual thresholds were used. During the ‘group-guided’ game each ‘pod’ obtained feedback about the collective performance in addition to the individual feedback. In the ‘Group—freestyle’ period, participants did not obtain specific instructions other than to attempt to synchronize as a group by targeting the same brain state.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4496007&req=5

pone.0130129.g003: Game timeline.Each phase of the game ended with fireworks display, size and brightness of which were determined by the performance of the participants. Total duration of the game was 6.5 min. In the Tutorial individual thresholds for alpha and beta were estimated based on guided ‘relax’ and ‘concentrate’ conditions. Participants obtained individual visual feedback on their performance to either increase alpha or beta. Solo 1 and 2 games were qualitatively identical with the tutorial, however individual thresholds were used. During the ‘group-guided’ game each ‘pod’ obtained feedback about the collective performance in addition to the individual feedback. In the ‘Group—freestyle’ period, participants did not obtain specific instructions other than to attempt to synchronize as a group by targeting the same brain state.

Mentions: EEG data observation. The screen was split into five color-coded vertical strips, each displaying ongoing EEG data of the participants. This served two purposes: to enable assistants to adjust the headsets if necessary and for participants to identify their own brain waves (Fig 2A). During this phase, participants were encouraged to blink and move their face muscles and observe the effects on the ongoing signal. The intention was to convince the participants that the displays were truly driven by their brain signals in real time. Assistants who were operating the software on pod computers waited until they received a hand signal from the central hub to indicate that everyone’s data had stabilized and to start the game. Thus all 4 pods would start the game at approximately the same time. From here onwards, the game unfolded automatically according to the timeline shown in Fig 3.


'My Virtual Dream': Collective Neurofeedback in an Immersive Art Environment.

Kovacevic N, Ritter P, Tays W, Moreno S, McIntosh AR - PLoS ONE (2015)

Game timeline.Each phase of the game ended with fireworks display, size and brightness of which were determined by the performance of the participants. Total duration of the game was 6.5 min. In the Tutorial individual thresholds for alpha and beta were estimated based on guided ‘relax’ and ‘concentrate’ conditions. Participants obtained individual visual feedback on their performance to either increase alpha or beta. Solo 1 and 2 games were qualitatively identical with the tutorial, however individual thresholds were used. During the ‘group-guided’ game each ‘pod’ obtained feedback about the collective performance in addition to the individual feedback. In the ‘Group—freestyle’ period, participants did not obtain specific instructions other than to attempt to synchronize as a group by targeting the same brain state.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4496007&req=5

pone.0130129.g003: Game timeline.Each phase of the game ended with fireworks display, size and brightness of which were determined by the performance of the participants. Total duration of the game was 6.5 min. In the Tutorial individual thresholds for alpha and beta were estimated based on guided ‘relax’ and ‘concentrate’ conditions. Participants obtained individual visual feedback on their performance to either increase alpha or beta. Solo 1 and 2 games were qualitatively identical with the tutorial, however individual thresholds were used. During the ‘group-guided’ game each ‘pod’ obtained feedback about the collective performance in addition to the individual feedback. In the ‘Group—freestyle’ period, participants did not obtain specific instructions other than to attempt to synchronize as a group by targeting the same brain state.
Mentions: EEG data observation. The screen was split into five color-coded vertical strips, each displaying ongoing EEG data of the participants. This served two purposes: to enable assistants to adjust the headsets if necessary and for participants to identify their own brain waves (Fig 2A). During this phase, participants were encouraged to blink and move their face muscles and observe the effects on the ongoing signal. The intention was to convince the participants that the displays were truly driven by their brain signals in real time. Assistants who were operating the software on pod computers waited until they received a hand signal from the central hub to indicate that everyone’s data had stabilized and to start the game. Thus all 4 pods would start the game at approximately the same time. From here onwards, the game unfolded automatically according to the timeline shown in Fig 3.

Bottom Line: While human brains are specialized for complex and variable real world tasks, most neuroscience studies reduce environmental complexity, which limits the range of behaviours that can be explored.The unusually large sample size allowed us to detect unprecedented speed of learning changes in the power spectrum (~ 1 min).Besides revealing these training effects, which are relevant for BCI applications, our results validate a novel platform engaging art and science and fostering the understanding of brains under natural conditions.

View Article: PubMed Central - PubMed

Affiliation: Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada.

ABSTRACT
While human brains are specialized for complex and variable real world tasks, most neuroscience studies reduce environmental complexity, which limits the range of behaviours that can be explored. Motivated to overcome this limitation, we conducted a large-scale experiment with electroencephalography (EEG) based brain-computer interface (BCI) technology as part of an immersive multi-media science-art installation. Data from 523 participants were collected in a single night. The exploratory experiment was designed as a collective computer game where players manipulated mental states of relaxation and concentration with neurofeedback targeting modulation of relative spectral power in alpha and beta frequency ranges. Besides validating robust time-of-night effects, gender differences and distinct spectral power patterns for the two mental states, our results also show differences in neurofeedback learning outcome. The unusually large sample size allowed us to detect unprecedented speed of learning changes in the power spectrum (~ 1 min). Moreover, we found that participants' baseline brain activity predicted subsequent neurofeedback beta training, indicating state-dependent learning. Besides revealing these training effects, which are relevant for BCI applications, our results validate a novel platform engaging art and science and fostering the understanding of brains under natural conditions.

No MeSH data available.


Related in: MedlinePlus