Limits...
Serological profile of foot-and-mouth disease in wildlife populations of West and Central Africa with special reference to Syncerus caffer subspecies.

Di Nardo A, Libeau G, Chardonnet B, Chardonnet P, Kock RA, Parekh K, Hamblin P, Li Y, Parida S, Sumption KJ - Vet. Res. (2015)

Bottom Line: Different levels of exposure to the FMDV resulted for each of the buffalo subspecies sampled (p = 0.031): 68.4%, 50.0% and 0% for Nile Buffalo, West African Buffalo and African Forest Buffalo, respectively.The characterisation of the FMDV serotypes tested for buffalo found presence of antibodies against all the six FMDV serotypes tested, although high estimates for type O and SAT 3 were reported for Central Africa.The results confirmed that FMDV circulates in wild ruminants populating both West and Central Africa rangelands and in particular in buffalo, also suggesting that multiple FMDV serotypes might be involved with type O, SAT 2 and SAT 1 being dominant.

View Article: PubMed Central - PubMed

Affiliation: Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. a.di-nardo.1@research.gla.ac.uk.

ABSTRACT
The role which West and Central African wildlife populations might play in the transmission dynamics of FMD is not known nor have studies been performed in order to assess the distribution and prevalence of FMD in wild animal species inhabiting those specific regions of Africa. This study reports the FMD serological profile extracted from samples (n = 696) collected from wildlife of West and Central Africa between 1999 and 2003. An overall prevalence of FMDV NSP reactive sera of 31.0% (216/696) was estimated, where a significant difference in seropositivity (p = 0.000) was reported for buffalo (64.8%) as opposed to other wild animal species tested (17.8%). Different levels of exposure to the FMDV resulted for each of the buffalo subspecies sampled (p = 0.031): 68.4%, 50.0% and 0% for Nile Buffalo, West African Buffalo and African Forest Buffalo, respectively. The characterisation of the FMDV serotypes tested for buffalo found presence of antibodies against all the six FMDV serotypes tested, although high estimates for type O and SAT 3 were reported for Central Africa. Different patterns of reaction to the six FMDV serotypes tested were recorded, from sera only positive for a single serotype to multiple reactivities. The results confirmed that FMDV circulates in wild ruminants populating both West and Central Africa rangelands and in particular in buffalo, also suggesting that multiple FMDV serotypes might be involved with type O, SAT 2 and SAT 1 being dominant. Differences in serotype and spill-over risk between wildlife and livestock likely reflect regional geography, historical circulation and differing trade and livestock systems.

No MeSH data available.


Related in: MedlinePlus

Scatterplot matrix of the pairwise correlation analysis estimated between PI values obtained from buffalo samples tested for each of the FMDV serotypes by SPCE. Variables are reordered and coloured according to the returned Pearson correlation values [blue (ρ ≤ 0.3); yellow (0.3 >ρ ≤ 0.5); red (ρ ≥ 0.5)], where higher correlated variables are plot near the diagonal.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4495843&req=5

Fig4: Scatterplot matrix of the pairwise correlation analysis estimated between PI values obtained from buffalo samples tested for each of the FMDV serotypes by SPCE. Variables are reordered and coloured according to the returned Pearson correlation values [blue (ρ ≤ 0.3); yellow (0.3 >ρ ≤ 0.5); red (ρ ≥ 0.5)], where higher correlated variables are plot near the diagonal.

Mentions: Different patterns of reaction to the 6 FMDV serotypes tested were recorded, from sera only positive for a single serotype to multiple reactivities. A number of sera with the highest serotype-specific responses (i.e. highest PI values) were identified for type O (16.7%, 2/12), C (16.7%, 2/12) and SAT 2 (58.3%, 7/12) in samples collected from West Africa, and for type A (2.6%, 3/115), O (47.8%, 55/115), C (5.2%, 6/115), SAT 1 (14.8%, 17/115), SAT 2 (27.0%, 31/115) in those retrieved from Central Africa (Table 6). No sera with the highest serotype-specific response for SAT 3 were reported, even though PI values of up to 79 and 87 were estimated from samples of West and Central Africa, respectively. The potential cross-reaction between pairs of serotypes tested was then assessed computing the pairwise correlation matrix of continuous data (PI values) for all the samples analysed (Figure 4). Statistically significant correlations (p = 0.000) with high ρ coefficients were reported for the A–SAT 1 (0.66), A–SAT 3 (0.61), SAT 1–SAT 3 (0.70), C–SAT 3 (0.67) and C–SAT 2 (0.54) pairs. No correlation was found between O and any of the other FMDV serotypes tested (ρ≤ 0.1; p > 0.05). The random sample (n = 43) extracted from the SPCE positive data was confirmed by the VNT test, which reported positive results at the highest titre of 1:90, 1:178, 1:256, 1:1024 and 1:355 for O, C, SAT 1, SAT 2 and SAT 3 FMDV serotypes, respectively. Inconclusive results were obtained for type A (titre of 1:22).Table 6


Serological profile of foot-and-mouth disease in wildlife populations of West and Central Africa with special reference to Syncerus caffer subspecies.

Di Nardo A, Libeau G, Chardonnet B, Chardonnet P, Kock RA, Parekh K, Hamblin P, Li Y, Parida S, Sumption KJ - Vet. Res. (2015)

Scatterplot matrix of the pairwise correlation analysis estimated between PI values obtained from buffalo samples tested for each of the FMDV serotypes by SPCE. Variables are reordered and coloured according to the returned Pearson correlation values [blue (ρ ≤ 0.3); yellow (0.3 >ρ ≤ 0.5); red (ρ ≥ 0.5)], where higher correlated variables are plot near the diagonal.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4495843&req=5

Fig4: Scatterplot matrix of the pairwise correlation analysis estimated between PI values obtained from buffalo samples tested for each of the FMDV serotypes by SPCE. Variables are reordered and coloured according to the returned Pearson correlation values [blue (ρ ≤ 0.3); yellow (0.3 >ρ ≤ 0.5); red (ρ ≥ 0.5)], where higher correlated variables are plot near the diagonal.
Mentions: Different patterns of reaction to the 6 FMDV serotypes tested were recorded, from sera only positive for a single serotype to multiple reactivities. A number of sera with the highest serotype-specific responses (i.e. highest PI values) were identified for type O (16.7%, 2/12), C (16.7%, 2/12) and SAT 2 (58.3%, 7/12) in samples collected from West Africa, and for type A (2.6%, 3/115), O (47.8%, 55/115), C (5.2%, 6/115), SAT 1 (14.8%, 17/115), SAT 2 (27.0%, 31/115) in those retrieved from Central Africa (Table 6). No sera with the highest serotype-specific response for SAT 3 were reported, even though PI values of up to 79 and 87 were estimated from samples of West and Central Africa, respectively. The potential cross-reaction between pairs of serotypes tested was then assessed computing the pairwise correlation matrix of continuous data (PI values) for all the samples analysed (Figure 4). Statistically significant correlations (p = 0.000) with high ρ coefficients were reported for the A–SAT 1 (0.66), A–SAT 3 (0.61), SAT 1–SAT 3 (0.70), C–SAT 3 (0.67) and C–SAT 2 (0.54) pairs. No correlation was found between O and any of the other FMDV serotypes tested (ρ≤ 0.1; p > 0.05). The random sample (n = 43) extracted from the SPCE positive data was confirmed by the VNT test, which reported positive results at the highest titre of 1:90, 1:178, 1:256, 1:1024 and 1:355 for O, C, SAT 1, SAT 2 and SAT 3 FMDV serotypes, respectively. Inconclusive results were obtained for type A (titre of 1:22).Table 6

Bottom Line: Different levels of exposure to the FMDV resulted for each of the buffalo subspecies sampled (p = 0.031): 68.4%, 50.0% and 0% for Nile Buffalo, West African Buffalo and African Forest Buffalo, respectively.The characterisation of the FMDV serotypes tested for buffalo found presence of antibodies against all the six FMDV serotypes tested, although high estimates for type O and SAT 3 were reported for Central Africa.The results confirmed that FMDV circulates in wild ruminants populating both West and Central Africa rangelands and in particular in buffalo, also suggesting that multiple FMDV serotypes might be involved with type O, SAT 2 and SAT 1 being dominant.

View Article: PubMed Central - PubMed

Affiliation: Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. a.di-nardo.1@research.gla.ac.uk.

ABSTRACT
The role which West and Central African wildlife populations might play in the transmission dynamics of FMD is not known nor have studies been performed in order to assess the distribution and prevalence of FMD in wild animal species inhabiting those specific regions of Africa. This study reports the FMD serological profile extracted from samples (n = 696) collected from wildlife of West and Central Africa between 1999 and 2003. An overall prevalence of FMDV NSP reactive sera of 31.0% (216/696) was estimated, where a significant difference in seropositivity (p = 0.000) was reported for buffalo (64.8%) as opposed to other wild animal species tested (17.8%). Different levels of exposure to the FMDV resulted for each of the buffalo subspecies sampled (p = 0.031): 68.4%, 50.0% and 0% for Nile Buffalo, West African Buffalo and African Forest Buffalo, respectively. The characterisation of the FMDV serotypes tested for buffalo found presence of antibodies against all the six FMDV serotypes tested, although high estimates for type O and SAT 3 were reported for Central Africa. Different patterns of reaction to the six FMDV serotypes tested were recorded, from sera only positive for a single serotype to multiple reactivities. The results confirmed that FMDV circulates in wild ruminants populating both West and Central Africa rangelands and in particular in buffalo, also suggesting that multiple FMDV serotypes might be involved with type O, SAT 2 and SAT 1 being dominant. Differences in serotype and spill-over risk between wildlife and livestock likely reflect regional geography, historical circulation and differing trade and livestock systems.

No MeSH data available.


Related in: MedlinePlus